Programplaner og emneplaner - Student
Master's Programme in Applied Computer and Information Technology Programme description
- Programme name, Norwegian
- Master's Programme in Applied Computer and Information Technology
- Valid from
- 2025 FALL
- ECTS credits
- 120 ECTS credits
- Duration
- 4 semesters
- Schedule
- Here you can find an example schedule for first year students.
- Programme history
-
Introduction
The Master's program in Applied Computer and Information Technology (ACIT) offers an expert-level education in the design, development, use and maintenance of computer technology, electronics and software in areas that have become of great importance for modern societies. We live in a world with computing devices both surrounding us and, in some cases, even working inside us. Technology is a part of how we entertain ourselves, communicate, govern and heal. Services that span the world open up for individuals to interact across the globe.
Yet with technology comes new challenges. The application of computers and electronics in our society offers progress for many, but it may also close the doors for people with impairments. We can communicate across the globe, but our communication can be intercepted and used against us. Our data can be used to get new insight about our behavior, but the analysis is complex and requires ethical considerations of whether the search for new knowledge is indeed with the right intentions. Artificial Intelligence offers to delegate many mundane tasks to robots, but consequences are potentially wide and may trigger deep changes in our civilization.
The Faculty of Technology, Art and Design at Oslo Metropolitan University believes that solving these challenges requires a broad and multidisciplinary approach. Solutions for the public should be viewed as an artefact beyond a singular discipline, like Computer Science or Electrical Engineering. It needs to be a combination of expert knowledge and interdisciplinary thinking. Our researchers know from their own experience that in the real world, engineers sit alongside mathematicians, programmers, economists, sociologists, physicists, designers and statisticians, just to name a few, to work on self-driving cars, computer games, medical devices, solutions to combat the climate crisis.
As technologists we can become the enablers of others. We can let teachers teach in novel ways. We can let children with disabilities partake in activities previously denied to them and we can let doctors perform surgery on patients that are miles away. Moreover, we become inventors and transformers as we understand what others need and have the expertise to know what is possible, or should be possible. This makes our field incredibly meaningful and important. This program offers a range of specialisations stemming from the overlap of three fields of research: Computer Science, Electrical Engineering and Mathematical Modelling.
The uniqueness of ACIT is that it offers a closer connection between all three fields and showcase how they are part of the same technological fabric of today's digital society. Thus, ACIT recognizes that candidates will have a better foundation for solving tomorrows challenges if a broader perspective is available to them. The aim is not, however, to create generalists, but to create experts in their own field who are also able to see the broad picture of how technology impacts society. These individuals contribute not only through providing deep knowledge and expert skills from a relevant field, but at the same time are able to partake constructively as members of interdisciplinary teams. The program is designed to allow the student to select an area of specialisation but also requires them to become familiar with a second area of their choice. In addition, the student will be trained specifically in the role as the expert member of a team.
Each field of specialisation represents an area where the application of software, data, computers and electronics has become necessary for modern society yet challenging to do in practice. These areas are still wide enough to allow for life-long careers as technology progresses. In addition, a Master's degree in science requires each candidate to have training in scientific thinking and research, enabling our candidates to pursue careers as scholars in academia as well as industry researchers, leading the way for new discoveries and scientific progress.
ACIT Specialisation areas
Our program offers several areas of specialisation. Each area connects the student to an active research group at the faculty. When applying for the program, the applicant needs to select what area of specialisation to join. Please note that each specialisation has a unique set of admissions requirements.
ACIT: Applied Artificial Intelligence
Recent discoveries in artificial intelligence have enabled computers and machines to perform many cognitive tasks better than humans, from self-driving cars to diagnosing diseases in seconds. The application of artificial intelligence methods is revolutionizing the way we work and live. This specialisation involves learning how complex systems are designed and used to make autonomous decisions. The students will have access to different types of robotics and intelligent systems that can be used to test their work. This area involves programming, robotics and mathematics.
ACIT: Electronics and Biomedical Systems
The need for innovation in the field of electronics and biomedical systems has never been so important as now. Neither has it ever been given so much attention from governments, organisations providing health care and the media. It is evident that to provide world class health care, the need for technology that helps efficiency and accuracy is essential. This specialisation will prepare the students for a professional career in companies related to new and existing health products. The students gain an interdisciplinary background but with a focus in electrical engineering and instrumentation.
ACIT: Cloud-based Services and Operations
Today's services need to be designed for thousands; even millions of users and require infrastructures and architectural designs beyond common webservers and databases. This specialisation area focuses on the practice of designing, developing and running massive-scale services and delivering software faster and with higher quality than before. We embrace the DevOps philosophy, in that developers should be better trained in automation and deployment and operations should build mechanisms for developers to thrive. It is highly relevant for anyone who wants a career as a software developer. The specialisation covers both infrastructure management and agile software delivery and automated testing and deployment, creating candidates with a practical competence in the entire cloud stack from the servers and clouds and all the way to the running service.
ACIT: Cyber Security
Cyber security ensures the proper and reliable function of digital systems. Its focus is the creation, maintenance and analysis of information security, data privacy data secrecy, the assessment of risks and their mitigation, and the reliable operation of digital processes. The ACIT cyber security specialisation educates master students in the areas of general information security, in defensive and offensive operations for security, in technical data protection and privacy, and in the political and societal implications of cyber security, such as, for example, information warfare and cyberwar.
ACIT: Data Science
The wealth of data produced by us and the things around us offer new knowledge that can be useful for both business and government. It can assist in public transport, health care as well as provide tailored market solutions. With all the data available to us, however, a special expertise is needed to organize and harness it so that useful knowledge can be extracted. This area offers a deep-dive into the storage and analysis of Big Data from a practical perspective. Data Science involves programming, use of advanced tools and infrastructures and statistics.
ACIT: Universal Design of ICT
With our emerging digital society, it is becoming essential that all electronic information and services should be accessible for all, regardless of devices, situations, and abilities. As progress moves us forward, no-one should be left behind. This poses a great challenge on ICT infrastructure and services in our society. Our world requires competent ICT professionals who can create universally accessible user interfaces that work for all. This specialisation offers a unique opportunity to become that professional.
ACIT: Mathematical Modelling and Quantum Technologies
Application of mathematics to describe our world is a central element of many areas of our every-day life. Physics, economics and meteorology are examples of disciplines where mathematicians work side-by-side with specialists to convert real phenomena into equations. When these equations are translated into program code to be executed in potentially massive computing clusters, simulations are generated that may be used for e.g. weather or economy forecasting. This area is characterized by development of mathematical models, application of sophisticated methods for analyzing and simulating the models as well as use of tools, programming and computational infrastructures. Students of this specialisation can expect to learn how their competence can be utilized in practice by the industry.
ACIT: Robotics and Control
Robotics and Intelligent Systems are steadily revolutionizing almost every aspect of our every-day life. From self-driving cars, autonomous ships, fully automated factories and drones that can deliver groceries. It is a field with tremendous expected growth and demand for skilled multidisciplinary professionals in the convergence of electrical, mechanical and software engineering. This specialisation provides a hands-on approach to the analysis, design, and control of robotic and autonomous systems.
Programme objectives
This program offers a practical-minded, profession-oriented specialisation, extending a bachelors in technology, computer and software engineering, electrical engineering and mathematics. Our goal is to educate and train candidates so as to make them fit to address the challenges of both professional life and scholarly enquiry within their specialisation as well as being a productive member of interdisciplinary teams.
Graduates from this program will:
- understand the role of their specialisation in organisations and society
- possess deep technical skills from their own specialisation that can be applied in a variety of real-life scenarios
- understand how their specialisation is part of a wider fabric of skills necessary to solve tomorrows challenges
- have a professional and ethical attitude towards their role in the workplace
- display creative thinking in real-life situations, leaning both on theoretical knowledge and on pragmatism
- plan and execute their work in a structured and independent manner, be it as professionals or as researchers in their field
Target group
The program offers career-defining specialisations that are closely tied with the industry. Focus is on building practical skills combined with scientific craftsmanship. Graduates from this program are attractive candidates for public and private sectors as well as non-profit organisations. Our target audience are individuals with a bachelor's degree who are interested in an expert role as well as the option to pursue an academic career either directly or later.
The different specialisations together provide for a wide field of recruitment and is therefore relevant for bachelor graduates from many engineering backgrounds as well as traditional natural sciences. Students from fields within IT, such as human-computer interaction, web- development or applied computer technology will also find suitable specialisations here.
Please consider the admission requirements for a detailed list.
Admission requirements
Applicants will choose the desired specialisation track at the point of applying for the program. Admission to the program is based on two sets of requirements. The general admission requirements, which are the same regardless of track chosen, and the specialisation track requirements. Please take special note of the individual requirements of each specialisation track.
For each specialisation track, there is also a list of recommended prior knowledge, which can be found in the Content and Structure section, under "Specialisation Track Content". That list is not a formal admission requirement, but we encourage students to review it in order know what areas they might want to spend time preparing in before starting in order to avoid steep learning curves. The topics listed can be found as part of most university bachelor programs in technology and engineering. The student can use the list to inform any decision on elective courses in their bachelor studies that might best prepare them for their targeted specialisation in this program.
General admission requirements
In order to qualify for an international master's degree, the applicant must be able to document sufficient mastery of English. Please consult the current regulations at OsloMet for a complete overview: English proficiency requirements for master's - OsloMet
In addition to English proficiency, applicants must have completed a BSc or equivalent program with a grade average of C or better.
The master programme aims for a diverse group of students from many countries. To ensure even representation in each of the specialisations, if a country is overrepresented in applications (with the exception of applicants from Norway), the program reserves the right to assign a maximum of three students from each country to a specialisation.
Specialisation track requirements
In order to be qualified for their desired track, the applicant must comply with at least ONE of the requirements for that track. Each requirement is a combination of Bachelor's degree from a specific field with possible conditions for ECTS within certain topics.
Applied Artificial Intelligence
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in Information Technology or other equivalent qualifications, which include at least 80 ECTS within the field of Computer Science
- BSc in Electrical Engineering with at least 10 ECTS of programming
- BSc in Mathematics or Applied Mathematics with at least 10 ECTS of programming
- BSc in Mechanical Engineering with specialisation in mechatronics, with at least 20 ECTS in programming
Electronics and Biomedical Systems
- BSc in Electrical Engineering
- BSc in Biomedical Engineering
- BSc in Mechanical Engineering
- BSc in Chemical Engineering
- BSc in Biotechnology Engineering
- BSc in Physics
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in StatisticsAnd 25 ECTS mathematics and/or statistics
Cloud-based Services and Operations
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in Information Technology or other equivalent qualifications, with at least 80 ECTS within the field of Computer Science
- BSc in Electrical Engineering with at least 10 ECTS of programming
- BSc in Mechanical Engineering with specialisation in mechatronics, with at least 20 ECTS in programming
Cyber Security
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in Information Technology or other equivalent qualifications, with at least 80 ECTS within the field of Computer ScienceYou also need a minimum of 10 ECTS in data security or a similar technical topics, such as network security, information security, mobile security, applied cryptography, privacy-enhancing technology or computer security management.
Data Science
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in Mathematics or Applied Mathematics with at least 10 ECTS in programming
- BSc in Physics with at least 10 ECTS in programming
- BSc in Statistics with at least 10 ECTS in programming
- BSc in other engineering subjects with at least 10 ECTS in mathematics, 10 ECTS in statistics courses and 10 ECTS in programming
Mathematical Modelling and Quantum Technologies
- BSc in an engineering discipline with at least 30 ECTS (in total) withinmathematics, statistics and/or scientific computing
- BSc in Computer Science or Informatics with at least 30 ECTS (in total) within mathematics, statistics and/or scientific computing
- BSc in Mathematics
- BSc in Statistics
- BSc in Physics
Robotics and Control
- BSc in Electrical Engineering
- BSc in Mechanical Engineering
- BSc in Chemical Engineering
- BSc in Physics
- BSc in Mathematics or Applied Mathematics
- BSc in Computer Science, Computer Engineering or Informatics And 10 ECTS programming and 25 ECTS mathematics and/or statistics.
Universal Design of ICT
- BSc in Computer Science, Computer Engineering or Informatics
- BSc in Information Technology or other equivalent qualifications, which at least 80 ECTS within the field of Computer Science.
Learning outcomes
On successful completion of their Master's degree, the candidate should have the following qualifications defined in knowledge, skills and general competence:
Knowledge
Upon successful completion of the program, the candidate:
- has thorough knowledge of the professions within applied computer and information technology and their role in businesses, organisations and society
- has a thorough knowledge of the processes and methodologies applied by professional practitioners within fields like information technology, scientific computing and electrical engineering or a combination of these traditional fields, both in public and private sector
- has an advanced understanding of how technological advances in society are alloys of multiple disciplines, such as Mathematics, Computer Science, Electrical Engineering and more
- has a fundamental understanding of a secondary field within applied computer and information technology and its role in organisations and society
- has thorough experience in interdisciplinary work and how it contributes to solving complex problems
Skills
Upon successful completion of the program, the candidate:
- can contribute to innovation processes in applied computer and information technology by harnessing knowledge and skills from a research discipline, such as Computer Science, Electrical Engineering or Mathematics, and directing them towards an interdisciplinary problem
- can facilitate, nourish and cultivate interdisciplinary perspectives in projects
- can design and implement technical solutions to challenges that represent modern and real-life scenarios
- can translate abstract theoretical models or technical descriptions into working solutions and systems, relative to their area of focus
- can analyze existing theories, methods and interpretations in their field and work independently on practical and theoretical problems
- can use relevant methods for research, scholarly and development work within their field in an independent manner
- can carry out independent research or development project within their field under supervision and in accordance with applicable norms for research ethics
- can identify and communicate common facets and challenges within their field to professionals from other fields
- can deploy, use and manage systems and technical tools that in complexity and scale represent enterprise scenarios
- can independently update their knowledge as technology progresses to new areas within society
- can apply knowledge to new areas within their academic field
- can analyze academic problems within their area of research based on its methods, tradition and role in society
General Competence
Upon successful completion of the program, the candidate:
- can appreciate why evaluating a technological challenge beyond the perspective of a single discipline is needed in the pursuit of a safe, inclusive and responsible technologically advanced society
- can analyze relevant academic, professional and research ethical problems in applied computer and information technology
- can apply his/her knowledge and skills in new areas in order to carry out advanced assignments in the realm of technology
- can communicate extensive independent work and masters language and terminology of their own academic field or an interdisciplinary field
- can communicate about academic and professional issues, analyses and conclusions in their field, both with specialists and the general public
- can contribute to new thinking and innovation processes
Teaching and learning methods
Målgruppen for studiet er autoriserte sykepleiere som ønsker å arbeide som akutt-, anestesi-, barne-, intensiv- eller operasjonssykepleier, primært i spesialisthelsetjenesten, men også med behandling av akutt syke i primærhelsetjenesten.
Bruk av ansiktsdekkende bekledning er ikke forenlig med gjennomføring av studiet.
Internationalisation
Opptak skjer direkte til ønsket spesialisering. Det faglige grunnlaget for opptak til studiet er 3-årig bachelorgrad i sykepleie eller tilsvarende. I det faglige grunnlaget kan annen videreutdanning og masterutdanning innen helsefag inngå. I tillegg kreves det norsk autorisasjon som sykepleier og minst 2 års somatisk yrkespraksis som sykepleier fra spesialisthelsetjenesten etter autorisasjon. For opptak til alle masterstudier ved OsloMet – storbyuniversitetet kreves det gjennomsnittskarakter C eller bedre fra det faglige grunnlaget. Det er ingen egen kvote for søkere som kun konkurrerer på grunnlag av karakterpoeng.
Personer med fullført videreutdanning ved OsloMet etter programplan gjeldende fra opptak høsten 2022 kan søke eget innpassingsopptak til masterstudiet. Rangering foregår etter ordinære regler fastsatt i forskrift om opptak til studier ved OsloMet.
Opptak til studiet gjennomføres i henhold til forskrift om opptak til studier ved OsloMet – storbyuniversitetet.
Søkere som tas opp til studiet, må fremlegge politiattest, jamfør forskrift om opptak til høyere utdanning, kapittel 6.
Tilleggspoeng yrkespraksis
Operasjonssykepleie
Det gis tilleggspoeng (maksimalt 1 poeng) for relevant yrkespraksis utover minstekravet. Med relevant yrkespraksis menes yrkespraksis som sykepleier ved somatiske avdelinger i sykehus/spesialisthelsetjenesten.
Work requirements
En kandidat med fullført masterstudium i spesialsykepleie til akutt og kritisk syke pasienter med spesialisering i operasjonssykepleie har følgende totale læringsutbytte definert i kunnskap, ferdigheter og generell kompetanse:
Kunnskap
Kandidaten
- har avansert kunnskap innenfor operasjonssykepleierens funksjons- og ansvarsområder
- har inngående kunnskap om behandling av akutt og kritisk syke i alle aldre
- har inngående kunnskap om vitenskapsteori og forskningsmetode
- har inngående kunnskap om kvalitetsarbeid, herunder metoder for kvalitetsforbedring og kvalitetskontroll
- har inngående kunnskap om pasientens og pårørendes opplevelser, reaksjoner og behov ved akutt og kritisk sykdom i et alders- og flerkulturelt perspektiv
- har inngående kunnskap om hvordan pasientens kognitive tilstand og utviklingsnivå påvirker pasientens mestringsevne og helsekompetanse ved akutt og/eller kritisk sykdom
- kan analysere og evaluere faglige problemstillinger med utgangspunkt i operasjonssykepleiens historie, tradisjoner, egenart og plass i samfunnet
- har spesialisert innsikt i de valgte metodiske tilnærmingene i det aktuelle forsknings- eller kvalitetsarbeidet som kandidaten har gjennomført*
- har avansert kunnskap og spesialisert innsikt i et avgrenset område relevant for utøvelse av operasjonssykepleie*
Ferdigheter
Kandidaten
- kan analysere og forholde seg kritisk til ulike informasjonskilder og anvende disse til å strukturere og formulere faglige resonnementer innen operasjonssykepleie
- kan analysere og forholde seg kritisk til eksisterende teori og metoder innenfor avansert behandling og operasjonssykepleie
- kan observere, vurdere og identifisere pasientens generelle og spesielle behov, ressurser og problemer gjennom kommunikasjon og samhandling med pasienten og pårørende
- kan forebygge komplikasjoner ved akutt og kritisk sykdom, skade og avansert helsehjelp
- kan redusere stress, smerte og ubehag ved avansert behandling og sykepleie
- kan anvende pedagogiske og fagdidaktiske prinsipper i informasjon, undervisning og veiledning til pasienter og omsorgspersoner fra ulike kulturer, og til egen faggruppe og andre i helseteamet
- kan opprettholde og gjenopprette vitale funksjoner der de er truet
- kan arbeide selvstendig med praktisk og teoretisk problemløsning relatert til operasjonssykepleiens funksjons- og ansvarsområder
- kan gjennomføre et selvstendig, avgrenset forsknings- eller kvalitetsarbeid under veiledning og i tråd med gjeldende forskningsetiske normer*
- kan reflektere kritisk i valgsituasjoner og handle i samsvar med egen kompetanse, etiske prinsipper, personvern og gjeldende lovverk
Generell kompetanse
Kandidaten
- har handlingskompetanse i operasjonssykepleie og bidrar til pasientsikkerhet
- kan gjennomføre helt eller delvis kompenserende sykepleie ved alvorlig svikt i pasientens ressurser for å ivareta sine grunnleggende behov
- kan anvende prinsipper om pasient- og familiesentrert omsorg
- kan analysere relevante fag-, yrkes- og forskningsetiske problemstillinger innen operasjonssykepleie med utgangspunkt i fag-, forsknings-, erfarings- og pasientkunnskap
- kan anvende kunnskap og ferdigheter på nye områder for å gjennomføre avanserte arbeidsoppgaver innen operasjonssykepleie
- kan anvende kunnskap og ferdigheter på nye områder for å gjennomføre avanserte prosjekter innen operasjonssykepleie *
- kan utøve kunnskapsbasert praksis
- kan sikre sensitive personopplysninger etter gjeldende lover og forskrifter
- kan formidle omfattende selvstendig arbeid og behersker uttrykksformene innenfor operasjonssykepleie *
- kan kommunisere om faglige problemstillinger, analyser og konklusjoner innenfor operasjonssykepleie både med spesialister og til allmenheten
- kan samhandle flerfaglig og tverrfaglig i pasientbehandlingen
- kan bidra til nytenkning og innovasjonsprosesser i klinisk praksis *
- kan bearbeide egne reaksjoner i forbindelse med arbeidet, og bistå medarbeidere/kolleger med deres opplevelse og reaksjoner
- kan forholde seg kritisk til teknologiens muligheter og begrensninger
*Studenter som velger å avslutte etter 90 studiepoeng oppnår ikke disse læringsutbyttene
Assessment
Masterprogrammet er organisert som et heltidsstudium med 90 studiepoeng i de tre første semestrene. Masteroppgaven på 30 studiepoeng fordeler seg over ett år. Studiets normerte tid er til sammen to og et halvt år. Spesialiseringen i operasjonssykepleie har 30 uker med praksisstudier fordelt på de tre første semestrene. Praksisstudiene beskrives under kapittel Praksisstudier.
Programmet har i tillegg til felles masteroppgave to fellesemner som er Medisinsk og naturvitenskapelig kunnskap, 10 stp. og Vitenskapsteori,forskningsmetode og kvalitetsarbeid, 15 stp.
Spesialiseringene har egne emner for sine funksjons- og ansvarsområder og andre spesialiseringsemner. Prosjektbeskrivelse til masteroppgaven ligger i spesialsykepleiers emner for funksjons- og ansvarsområder for operasjonssykepleie.
Masteroppgaven skrives over to semestre og tilrettelegger dermed for at studentene kan arbeide ved siden av, parallelt med oppgaveskriving.
Normal arbeidsinnsats på fulltid er 40 timer per uke. Dette inkluderer praksisstudier, timeplanlagt aktivitet, studentens egenaktivitet, arbeidskrav og eksamen.
Other information
Studiets arbeids- og undervisningsformer er bygd rundt et sosiokulturelt læringsperspektiv. Det innebærer at studentene deltar og bidrar i et læringsfelleskap der både medstudenter, faglærere og andre er viktige for ens egen læring. Gjennom hele studiet anvendes arbeidsformer som fremmer kunnskapsbasert praksis, ved at studentene integrerer forskningskunnskap, erfaringskunnskap og pasientkunnskap, og bidrar til at studentene stimuleres til aktivt å søke relevante og pålitelige kunnskapskilder.
OsloMet ønsker studenter som er aktive deltagere i egen læringsprosess og som tar en aktiv rolle i studiets arbeids- og undervisningsformer. Studentene kan være med å bestemme tema for arbeidskrav, prosjektbeskrivelse og masteroppgave med selvvalgt pensum. Læringsutbytter i praksis konkretiseres av hver student på bakgrunn av hvilke læringsbehov studenten har og hvilke læringsmuligheter som finnes på praksisstedet. Studentene har mulighet til å organisere en del av praksisstudiene utenfor universitetets avtalte praksisplasser. Å svare på evalueringer i studiet og delta i klassens time kan gi grunnlag for endring og videreutvikling av utdanningen. Målet med arbeidsformene er å stimulere til selvstendighet, nytenkning, egenaktivitet og refleksjon. I læringsfellesskapet skal tilbakemelding, formativ (fortløpende) vurdering og veiledning være sentrale virksomheter som driver læringen fremover.
I studiet benyttes ulike typer digitale læringsressurser for å stimulere til studentaktiv læring og samarbeid. Ressursene kan bl.a. inngå som del av studentenes forberedelser til undervisning, som støtte i samarbeidsprosesser eller som hjelp til å øve eller å teste egne kunnskaper.
Forelesninger
Forelesninger blir i hovedsak benyttet for å introdusere nytt fagstoff, gi oversikt, trekke frem hovedelementer, synliggjøre sammenhenger mellom ulike tema og formidle relevante problemstillinger. Forelesninger vil primært gis på norsk, men kan også foregå på engelsk.
Gruppearbeid
Gruppearbeid anvendes som pedagogisk metode for å fremme samarbeid mellom studentene, understøtte læringen av fagstoff og gi trening i samarbeid og samspill, som er nødvendig kompetanse i yrkesutøvelsen.
Seminarer
Det arrangeres seminarer der studentene legger frem oppgaver de har arbeidet med, og der de får muntlig tilbakemelding fra medstudenter og faglærere. Hensikten med seminarene er å stimulere hverandres læringsprosess, tydeliggjøre egen fagforståelse og utvikle samarbeidsevne. Studentene får mulighet til å oppøve ferdigheter i faglig formulering, og det legges til rette for faglig diskusjon mellom studentene og faglærer.
I forbindelse med masteroppgaven arrangeres det masterseminarer, der studentene presenterer og diskuterer utkast til masteroppgavetekst i et større forum. På disse seminarene vil sentrale temaer tilknyttet arbeidet med masteroppgaven tas opp. Hensikten er å tilrettelegge for faglige diskusjoner mellom studenter og faglærere, kritisk-analytiske metoderefleksjoner og vitenskapsteoretiske refleksjoner.
Simulering
Simulering brukes for å innøve prosedyrer og for å bli fortrolig med utstyr og apparater. Simulering anvendes også for å opparbeide erfaring og kompetanse i teamarbeid ved livstruende og sjelden forekommende situasjoner, særlig i kompliserte situasjoner som krever rask og korrekt handling. Simulering gir studentene mulighet til å stoppe opp i situasjoner som krever refleksjon i handling. Etter refleksjon over egne handlinger kan studenten gjenta situasjonen og forbedre handlingsberedskapen.
Undervisning/veiledning til pasient og/eller medstudenter
I løpet av studiet gjennomfører studenten undervisning av medstudenter, kolleger og veiledning av pasient, og eventuelt familie/pårørende. For eksempel preoperativ informasjon.
Refleksjonsgrupper
I refleksjonsgrupper skal studentene reflektere over spesialsykepleierens funksjon og ansvar ved helsehjelp til akutt og/eller kritisk syke pasienter. Studentene deles inn i mindre grupper. Refleksjonsgruppene ledes av faglærere.
Selvstudier
Noen temaer inngår ikke i organisert undervisning, og det forventes at studenten tilegner seg denne kunnskapen ved selvstudier. Studentene kommer til studiet med ulike læreforutsetninger og gjennom selvstudier får de anledning til å prioritere temaer og områder de ønsker å arbeide mer med. Selvstudier er også med på å stimulere til selvstendig egenaktivitet og refleksjon.
Praksisstudier
Praksisstudier utgjør en viktig arbeidsform i studiet. Se nærmere beskrivelse i eget kapittel.