Programplaner og emneplaner - Student
Master’s Programme in Civil Engineering Programplan
- Engelsk programnavn
- Master’s Programme in Civil Engineering
- Gjelder fra
- 2025 HØST
- Studiepoeng
- 120 studiepoeng
- Varighet
- 4 semestre
- Timeplan
- Her finner du et eksempel på timeplan for førsteårsstudenter.
- Programhistorikk
-
Innledning
Gjennom hele studiet legges det opp til varierte arbeidsformer med studentaktive arbeidsmetoder, avhengig av tema og studieoppgaver.
Følgende prinsipper ligger til grunn for valg av arbeidsformer og organisering av innhold:
- Praksisorientering: Utgangspunktet for studiet er utfordringer og oppgaver i læreryrket. Dette betyr at studentenes erfaringer fra praksisfeltet og refleksjoner knyttet til dette har en sentral plass i studiet.
- Problemorientering: Studentene skal lære gjennom å arbeide med virkelighetsnære problemstillinger og situasjoner. Problemorienteringen gjennomføres ved for eksempel feltstudier, problembasert læring og oppgaveløsning, prosjektarbeid og utviklingsarbeid
- Opplevelsesorientering: Studentene skal bli bevisst og kunne gi uttrykk for sine følelser og tanker i ulike situasjoner. De skal også kunne tilrettelegge for slike læringsprosesser hos sine elever/lærlinger
- Erfaringslæring: Studentene skal bli bevisst og kunne reflektere over egne yrkeserfaringer for å kunne nyttiggjøre seg disse i sin profesjonsutvikling. Gjennom å planlegge, prøve ut og reflektere over ny praksis vil studentene øke bevissthet og handlingsregister i ulike opplæringssituasjoner
- Eksemplarisk læring: Studentene lærer ved at egnede eksempler analyseres, bearbeides, anvendes og generaliseres for bruk i egen praksis.
- Verdiorientering: Studentene skal bli bevisst og klargjøre sine normer og holdninger i forhold til yrkesetiske standarder og konsekvenser av egne valg.
- Studentinnflytelse og målstyring: Studentene skal utarbeide mål og planer for egen læring. De skal delta i planlegging av studieforløpet innenfor rammene i programplanen og trekkes med i en fortløpende evaluering av studieopplegg, undervisnings- og læringsprosesser.
Studiet er planlagt med stigende krav til selvstendighet og ansvar for egne læreprosesser.
Utvikling av vurderingskompetanse er en sentral del av studiet, og kontinuerlig vurdering er en integrert del av læreprosessen. Formålet er både å gi studentene tilbakemelding på egen utvikling i forhold til studiets læringsutbytte, og å gi studentene erfaring i fremtidig vurderingsarbeid som yrkesfaglærere. Faglærere, praksislærere og medstudenter gir tilbakemelding på arbeid og utvikling gjennom studiet. Studentene skal også vurdere seg selv gjennom loggskriving, refleksjonsnotater og samtaler. På denne måten kan studentene utvikle bevissthet og metodekompetanse om vurderingsarbeid i egen profesjonsutøvelse.
Arbeidsformen, arbeidskrav og eksamen i emnene er for en stor del problem- og oppgavebasert. Det innebærer at studentene selv velger hensiktsmessig litteratur i arbeidet. Den oppgitte litteraturen dekker derfor emnene, men er likevel bare å anse som en anbefaling og en inngang til emnenes innhold. Ved at studentene innhenter hensiktsmessig litteratur sikrer det at studentene utvikler ferdigheter i tråd med læringsutbyttebeskrivelsene.
Valg av litteratur
Det er i hvert emne satt opp forslag til litteratur for profesjonsfaget, og ut fra arbeidskravene gjør studentene sitt utvalg av litteratur for profesjonsfaget tilsvarende 3600 sider ved slutten av studiet. Yrkesfaget i de forskjellige studieretningene omfatter mange forskjellige fag-/svennebrevområder. For de fleste studieretningene er det derfor ikke satt opp konkret forslag til litteraturliste for dette faget. Studentene velger selv relevant litteratur tilpasset sin yrkesfaglige bakgrunn. Litteraturlisten i yrkesfaget skal tilsvare 7200 sider ved slutten av studiet, fordelt på bredde- og dybdefag, og all litteratur skal godkjennes av faglærer.
Målgruppe
Praksisstudier
Praksisopplæringen skal bidra til at studentene oppnår relevant og god kompetanse for sin framtidige utøvelse av læreryrket. I praksisopplæringen skal studentene prøve ut og bearbeide relevante erfaringer og refleksjoner i forhold til læringsutbyttene i studiet. Ifølge rammeplan deles praksisen i:
- yrkesfaglig praksis, som skal utgjøre minimum 60 dager med veiledet og vurdert praksis knyttet til yrkesfaget
- pedagogisk praksis, som skal tilsvare minimum 70 dager veiledet og vurdert praksis knyttet til profesjonsfaget
Yrkesfaglig praksis
Hensikten med yrkesfaglig praksis er at studentene får innsikt i de ulike yrkene som inngår i eget utdanningsprogram (breddekunnskap) og fordypning i eget yrke (dybdekunnskap). Alle yrkesfaglige praksisperioder skal dokumenteres av studenten, og den skal veiledes og godkjennes av faglærer ved OsloMet.
Dokumentasjon av yrkesfaglig praksis gjøres på eget skjema og det kreves underskrift fra både praksissted og student. Skjemaet inneholder opplysninger om antall dager i praksis og leveres på universitetets læringsplattform. Dersom en student er syk eller av andre grunner ikke får levert dokumentasjon innen fastsatt frist får studenten ikke gå opp til eksamen i det emnet praksisperioden er knyttet til.
Pedagogisk praksis
Praksisopplæringen er på 70 dager og omfatter alle de aktiviteter som inngår i en lærers arbeidsplanfestede dag. Pedagogisk praksis skal i hovedsak gjennomføres i videregående opplæring på ulike trinn, men minst 10 dager pedagogisk praksis skal gejnnomføres på ungdomstrinnet i emnet 2200, Ungdomskultur, kjønn og mangfold.
Hvis en student ikke består en praksisperiode kan denne gjennomføres på nytt. Får studenten vurdert samme praksisperiode til ikke bestått to ganger må studiet avbrytes, jf. § 8-4 (2) i forskrift om studier og eksamen ved OsloMet.
Den pedagogiske praksisen skal være veiledet, variert og vurdert. De ulike periodene vurderes til bestått/ikke bestått. Det er utarbeidet en egen praksisguide for pedagogisk praksis i yrkesfaglærerutdanningen.
Opptakskrav
Reference is made to the Regulations relating to Admission to Studies at OsloMet. https://lovdata.no/dokument/SF/forskrift/2015-12-15-1681
1) Admission to all study directions in the master's degree programme requires:
Bachelor's degree in engineering
25 ECTS in mathematics
7.5 ECTS in physics, solid mechanics, building physics and/or thermodynamics
5 ECTS in statistics
An average grade of at least C (according to the ECTS grading scale) on your bachelor´s degree
Proof of your English proficiency: one of the following:
- English from a Norwegian or Nordic upper secondary school and a bachelor's degree from Norway or the Nordic countries
- at least 4 in English from Norwegian upper secondary school
2) Special requirements for the study directions:
Structural Engineering
Bachelor´s degree in civil engineering, mechanical engineering or marine engineering
20 credits in mechanics, statics or other courses in the field of structural engineering
Building Technology
Bachelor´s degree in civil engineering, mechanical engineering or energy & environment in buildings
Transport Infrastructure Engineering
Bachelor´s degree in civil engineering, mechanical engineering or marine engineering
Geotechnical Engineering
Bachelor´s degree in civil engineering, mechanical engineering, marine engineering or equivalent engineering discipline.
Smart Water Engineering
Bachelor´s degree in civil engineering, environmental engineering, electronic engineering, mechanical engineering, electronic engineering, chemical engineering or marine engineering
Læringsutbytte
I løpet av studiet skal studentene dokumentere ulike arbeidskrav som beskrives i emneplanene. Arbeidskravene er både knyttet til læringsfellesskapet på samlinger, pedagogisk praksis i skolen og yrkesfaglig praksis i bedrift. Arbeidskravene skal videreutvikle studentenes yrkesfaglige kompetanse og evne til å reflektere over egen undervisning og sentrale problemstillinger som er relevante for læreryrket. Studiet legger stor vekt på at studentene utvikler evne til å være aktive deltakere i utviklingsarbeid i fellesskap med andre.
Arbeidskrav kan dokumenteres skriftlig, muntlig eller ved andre dokumentasjonsformer (for eksempel film, multimodale tekster o.l.) og skal være levert/utført innen fastsatt(e) frist(er). Gyldig fravær dokumentert med for eksempel sykemelding, gir ikke fritak for å innfri arbeidskrav. Studenter som på grunn av sykdom eller annen dokumentert gyldig årsak ikke leverer/utfører arbeidskrav innen fristen, kan få forlenget frist. Ny frist for å innfri arbeidskrav avtales i hvert enkelt tilfelle med den aktuelle faglæreren.
Arbeidskrav vurderes til «Godkjent» eller «Ikke godkjent». Studenter som leverer/utfører arbeidskrav innen fristen, men som får vurderingen «Ikke godkjent», har anledning til én ny innlevering/utførelse. Studenten må da selv avtale ny innlevering av det aktuelle arbeidskravet med faglærer. Studenter som ikke leverer/utfører arbeidskrav innen fristen og som ikke har dokumentert gyldig årsak, får ingen nye forsøk. Alle arbeidskrav som er synliggjort i emnebeskrivelsen må være godkjent før eksamen kan gjennomføres.
Nærmere informasjon om arbeidskrav finnes i den enkelte emneplan.
Obligatorisk tilstedeværelse
Yrkesfaglærerutdanningen krever at studentene er aktive deltakere på alle organiserte opplæringsaktiviteter og at de bidrar med sine refleksjoner og erfaringer i det læringsfellesskapet klassen utgjør. Studenter med mer enn 20% fravær fra alle organiserte opplæringsaktiviteter i et emne får ikke avlegge eksamen. Gyldig fravær, dokumentert med for eksempel sykmelding, gir ikke fritak for kravet om deltakelse. Gyldig fravær kan kompenseres etter nærmere avtale med, og vurdering av faglærer/emneansvarlig lærer.
Innhold og oppbygging
The programme is a full-time programme over two years that consists of a lecture-based component with a scope of 90 credits and an independent project - the master's thesis - with a scope of 30 credits.
Content
The master's degree programme is profession-oriented and adapted to meet the building construction and infrastructure industry and society's need for up-to-date, forward-looking expertise in structural engineering, building technology, transport infrastructure engineering, geotechnical engineering and smart water process and infrastructure engineering.
Structural engineering concerns the analysis, calculation and design of load-bearing structures and structural systems. Bridges, quays, offshore installations and other large building structures are exposed to great loads combined with environmental and climate impacts. The Finite Element Method (FEM) is used to determine load effects (stress and strain) in the different parts of such complex structures. The study programme focuses on providing the students with solid, theoretical knowledge and applied skills in linear and non-linear FEM analysis, design of structures and structural systems, and service life dimensioning and service life extension of structures. Theory and applied skills are taught in the courses MABY4100 Finite Element Method in Structural Analysis, MABY4400 Structural Analysis and Design, MABY4800 Advanced Materials and Technologies for Sustainable Structures and MABY4500 Sustainable Concrete Structures. Behaviour of structures under dynamic loads is covered in the course MABY5200 Structural Dynamics.
Building technology concerns the analysis, calculation and design of the body of the building, including facades and building envelopes. Climate change and increased focus on resource use and environmental impacts thereby also entail a greater focus on the choice of materials and climate adaptation in connection with the design of buildings. The study programme focuses on providing the students with more detailed knowledge of building physics processes, principles and methods, and an understanding of the importance of the choice of building materials and components in the design of energy-efficient, environmentally friendly, climate-resilient buildings. Here, life-cycle analyses (LCA) and sustainability assessments are important tools for decisions on the choice of materials and building solutions. Theory and applied skills are taught in the courses MABY4200 Building Physics and Climate Adaptation of Buildings, MABY4700 Life Cycle Assessment for Built Enviroment, MABY4600 Sustainable Building Design and MABY4900 Timber Building Engineering. Computational fluid dynamics in and around buildings as well as structures are covered in the course MAEN4300 Fluid Dynamics and Computational Methods.
Transport infrastructure engineering concerns the analysis, calculation, design and management of transport infrastructure systems. Roadways and railways are typical transport infrastructure systems and they must be well designed and managed to provide safe and resilient support to traffic that is ever-changing with the advancement in the transport technology and increase in societal demand for multi-modal future-oriented transportation forms. Besides, existing transport infrastructure systems also need to be taken care of to ensure safe functionality. This specialization is built upon theory and applied skills in the field of transport infrastructure engineering. the courses cover a range of topics, including SMUA4200 Traffic Engineering and Intelligent Transport Systems, MABY5030 Advanced Pavement Design and Rehabilitation and MABY5040 Advanced Railway Engineering. In addition, important knowledge and skills of sustainability assessment are offered in the common course of MABY4700 Life Cycle Assessment for Built Environment and students have the possibilities to also choose courses within relevant structural and geotechnical engineering topics.
Geotechnical engineering concerns Engineering behaviours of earth materials such as soils and rocks to find solutions for various engineering problems. It is typically linked with hydrological, geological, and geophysical engineering. Geotechnical engineering is not only applicable to civil engineering but also to mining engineering, petroleum engineering, and offshore structures and foundations. Compared with other civil engineering directions, the tasks of a geotechnical engineer comprise more site-based field investigation and laboratory testing to classify relevant properties of geo materials with large variations to engineering design. This specification is fundamentally built upon the deep understanding of soil mechanics which will be taught in the course, MABY5410 Advanced Soil Mechanics. This course will provide a conceptual model for soil classification, cover soil mechanics for simple but widely applied models to the advanced framework and also highlight their engineering applications and typical state of art technics applied in this field. After this course, MABY5420 Geotechnical Site Investigation and Ground Modelling, MABY5440 Geotechnical Models and Simulations, MABY5460 Environmental Geotechnics, MABY5450 Urban Geotechnics, and MABY5430 Foundation Solutions will follow. This study specialisation provides students with abilities to handle tasks through all phases of geotechnical designs; from site investigation and soil testing, to proposed engineering solutions, to design validation at the end, based on solid theoretical knowledge.
Smart water engineering concerns the analysis, design and management of urban water resource processes and infrastructure. Water is an essential resource with strong links to energy and food production and urban water systems represent one of the largest water pollutant sources globally. Implementing state-of-the-art and innovative technology rather than conventional resource intensive ones is key to adapt in the future. As we move towards a hyper-connected urban infrastructure, data collection, decision support and process control form the need for future practitioners within smart water process and infrastructure. This specialization extends on the existing programme in civil engineering, offering the common courses of MABY4700 Life Cycle Assessment for Built Environment, MAEN4300 Fluid Dynamics and Computational Methods, SMUA4600 Geophysical Information Systems, MABY5050 Smart Infrastructure and Asset management and MABY5060 Managing Infrastructure Projects. The study specialisation focuses on providing the students with solid, theoretical knowledge and applied skills in the field of smart water process and infrastructure taught in the courses MABY5310 Urban pipe Systems, MABY5320 Bioprocess Technology, MABY5330 Water Resource Recovery Technology, MABY5340 Water Infrastructure, Trenches and No-Dig, MABY5350 Sensor Networks and Model Based Decisions Support and MABY5360 Design and Optimisation Projects.
Students are enrolled to one of the study directions from semester one.
Projects in the built environment are increasingly complex and interdisciplinary. The study programme focuses on teaching students how to use advanced computer programs and simulation tools to solve complex problems relating to their study directions.
The study programme also aims to qualify candidates with the competence to participate in research work in the field. All the courses taught in the second semester therefore include an element of research at different levels. The course MAEN5300 Research Methods and Ethics underpins the master's thesis and provides an introduction to research methods, ethics, and academic writing and dissemination of results.
The master's thesis will give the students the opportuinity to apply their knowledge and skills to relevant issues through more comprehensive project work. MABY5900, the master's thesis, is an independent, supervised research or development project in the core areas of the field, and represents further specialisation in either structural engineering, building technology, transport infrastructure engineering, geotechnical engineering or smart water process and infrastructure engineering.
The structure of the programme
The master's degree programme consists of compulsory courses, elective courses and a master's thesis. The course portfolio is composed so that the compulsory courses ensure academic and professional breadth, at the same time as the students are given an opportunity for in-depth study and specialisation through elective courses and the master's thesis.
Specialisation in the field of ‘structural engineering’ - SE requires the students to choose, in addition to the mandatory courses:
In the second semester, the following two courses:
MABY4400 Structural Analysis and Design (10 credits)
MABY4800 Advanced Materials and Technologies for Sustainable Structures (10 credits)
In the third semester, at least one course between the following two:
MABY4500 Sustainable Concrete Structures (10 credits)
MABY5200 Structural Dynamics (10 credits)
Specialisation in the field of ‘building technology’ - BT requires the students to choose, in addition to the mandatory courses:
In the second semester, the following two courses:
MABY4600 Sustainable Building Design (10 credits)
MABY4900 Timber Building Engineering (10 credits)
In the third semester, at least one course between the following two:
MABY4500 Sustainable Concrete Structures (10 credits)
MAEN4300 Fluid Dynamics and Computational Methods (10 credits)
In this way, students in both specialisations, i.e. SE and BT, get the opportunity to also choose some from the ‘transport infrastructure engineering’ elective courses (max. 1 per semester, i.e. in second and third semesters)
Specialisation in the field of ‘transport infrastructure engineering’ - TI requires the students to choose, in addition to the mandatory courses:
In the first semester, one courses from the following two courses:
MABY4100 Finite Element Method in Structural Analysis (10 credits)
MABY5420 Geotechnical Site Investigation and Ground Modelling (10 credits)
In the second semester, two courses from the following three courses:
MABY4400 Structural Analysis and Design (10 credits)
SMUA4400 Transport Modelling and Analytics (10 credits)
SMUA4600 Geographical Information Systems (10 credits)
In the third semester, two courses from the following four courses:
MABY4500 Sustainable Concrete Structures (10 credits)
MABY5200 Structural Dynamics (10 credits)
MABY5050 Smart Infrastructure and Asset Management (10 credits)
MABY5060 Managing Infrastructure Projects (10 credits)
Specialisation in the field of `geotechnical engineering´ - GEO requires the students to choose, in addition to the mandatory courses
In the second semester, one course from the following four courses:
MABY4400 Structural Analysis and Design (10 credits)
MABY4800 Advanced Materials and Technologies for Sustainable Structures (10 credits)
MABY5030 Advanced Pavement Design and Rehabilitation (10 credits)
MABY5040 Advanced Railway Engineering (10 credits)
In the third semester, one course from the following five courses:
MABY4100 Finite Element Method in Structural Analysis (10 credits)
MABY5000 Civil Engineering Seminars and Projects (10 credits)
MABY5050 Smart Infrastructure and Asset Management (10 credits)
MABY5060 Managing Infrastructure Projects (10 credits)
MABY5200 Structural Dynamics (10 credits)
All courses in the `smart water engineering´ - SWAPIE specialisation are mandatory, with no elective available for students to select.
In order for students to be formally assigned a supervisor for the master's thesis, all exams from first year of the study programme must be passed.
Students are encouraged to contact private and public enterprises in the region for the purpose of gaining practical training and experience in the fields through a summer job or similar, and to establish cooperation on project assignments.
1. studieår
Building Technology
1. semester
Building Technology Electives
2. semester
Geotechnical Engineering
1. semester
Geotechnical Engineering Electives
2. semester
Transport Infrastructure Engineering
1. semester
Transport Infrastructure Engineering Electives
1. semester
2. semester
Structural Engineering
1. semester
2. semester
Structural Engineering Electives
2. semester
Smart Water Process and Infrastructure Engineering
1. semester
2. studieår
Building Technology
4. semester
Building Technology Electives
3. semester
Geotechnical Engineering
3. semester
4. semester
Geotechnical Engineering Electives
3. semester
Transport Infrastructure Engineering
3. semester
4. semester
Transport Infrastructure Engineering Electives
3. semester
Structural Engineering
3. semester
4. semester
Structural Engineering Electives
3. semester
Smart Water Process and Infrastructure Engineering
3. semester
4. semester
Arbeids- og undervisningsformer
Programplanen er godkjent av Utdanningsutvalget LUI 25.09.2019
Internasjonalisering
Both the language of instruction and the course literature are in English, which means that the study programme is well suited for international students and student mobility. The study programme is structured so that it is possible for the students to take one semester abroad, in the third or fourth semester.
Students can gain approval and recognition of up to 30 credits on application. Students who go on an exchange in the fourth semester will write their master's thesis with a supervisor from the host institution.
OsloMet is part of the Erasmus programme for student exchange and has entered into several Erasmus+ agreements with relevant universities and university colleges. OsloMet has a dedicated web page with supplementary information about student exchanges: https://student.oslomet.no/utveksling-tkd
Arbeidskrav og obligatoriske aktiviteter
Required coursework means compulsory assignments or activities that must be approved within a given deadline in order for students to be able to take the exam. The coursework requirements in this study programme are linked to written assignments and compulsory attendance. The coursework requirements are described in more detail in the individual course descriptions.
Coursework requirements are set in order to promote the student's progress and development and to ensure his/her participation in necessary elements of the programme. Required coursework can also be set to ensure that students achieve a learning outcome that cannot be tested in an exam.
Required coursework is assessed as approved or not approved. In the event of delays in study progress, previously approved coursework remains valid for two years, provided that the course has not changed.
Valid absence documented by e.g. a medical certificate does not exempt students from meeting the coursework requirements. Students who fail to meet the coursework requirements within the deadline due to illness or for other documented valid reasons should as far as possible be given a new chance before the registration deadline for the exam. This must be agreed with the person responsible for the course on a case-by-case basis. If another attempt at meeting a coursework requirement is not possible because of the nature of the subject/course, the student must be prepared to meet the coursework requirements on the next possible occasion. This may result in delayed progress in the programme.
Vurdering og sensur
Assessment and grading shall take place in accordance with the provisions on assessment relating to Universities and University Colleges and the Regulations relating to Studies and Examinations at OsloMet.
The forms of assessment used shall promote learning and document that the students' competence is adequate in relation to the applicable learning outcome. The forms of assessment used in this study programme include supervised written exams, oral exams, individual and group project assignments and portfolio assessments. Assessment of the master's thesis and the oral presentation of the thesis come in addition to this.
The forms of assessment and grade scale are described in more detail in the individual course descriptions. In connection with the final assessment in the course, a grade scale with grades from A to E for pass (A being the highest) and F for fail is used, or the assessment pass/fail.
The master's degree programme is profession-oriented, which means that students are to a significant extent assessed on the basis of their ability to solve problems, and on whether their presentations of solutions meet technical, academic and ethical requirements. Project assignments with reports and presentations are therefore one of the dominant assessment forms used in the study programme.
The tuition takes place in English, and assignments/exams will also be in English. Students may, by agreement with the person responsible for the course, submit assignments in Norwegian (Scandinavian). The assignment given in the elective course (specialisation course) in the third semester and the master's thesis should be in English.
For courses where the assessment is based on both a project assignment and a written/oral exam, students must pass both the project assignment and the exam to be awarded a pass grade in the course.
Oral exams shall be assessed by two examiners, as this form of assessment cannot be appealed.
The master's thesis will be assessed by an external and an internal examiners. In addition to submitting a written report, students must also give an oral presentation of the thesis to the examiners and supervisor(s). The examiners will set the grade for the master's thesis after the oral presentation and questioning. Exams and portfolios that are only assessed by internal examiners shall regularly be selected for external assessment. Guildeline for master's theses at the Faculty can be found here: Retningslinjer for masteroppgaver ved Fakultet for teknologi, kunst og design - Student - minside (oslomet.no)
Students have the right to demand an explanation for and to appeal against a grade awarded and/or formal errors in connection with exams in accordance with Section 5-3 of the Act relating to Universities and University Colleges.
In connection with portfolio assessments, students can normally only appeal against the final grade awarded for the portfolio, and only if it contains verifiable components. If the portfolio assessment cannot be appealed, two examiners are used.
Students must register for resit/rescheduled exams themselves. Resit/rescheduled exams are normally organised jointly, early in the following semester. Oral exams can also be used in the event of resit/rescheduled exams.
After completing the programme, students will be awarded a diploma showing all their final grades (final assessments) in the courses that form the basis for the degree. The title of the master's thesis will also be included on the diploma.
Øvrig informasjon
Quality assurance
The purpose of OsloMet's quality assurance system is to strengthen students learning outcomes and development by raising the quality at all levels. Cooperation with the students, and their participation in the quality assurance work, is decisive to the overall learning outcome. Among the overall goals for the quality assurance system is to ensure:
- that the educational activities, including practical training and the learning and study environment, maintain a high level of quality
- that the study programmes are relevant for the professional fields
- that the quality development continues to improve
For the students, this entails, among other things, student evaluations in the form of:
- course evaluations
- annual student surveys for all of OsloMet
More information about the quality assurance system is available here: https://student.oslomet.no/regelverk#etablering-studium-evaluering-kvalitetssystem
The programme supervisor scheme is part of the quality assurance of each individual study programme. A programme supervisor is not an examiner, but someone who supervises the quality of the study programmes. All study programmes at OsloMet shall be subject to supervision by a programme supervisor, but there are different ways of practising the scheme. Reference is made to the Guidelines for Appointment and Use of Examiners at OsloMet: https://student.oslomet.no/regelverk