Programplaner og emneplaner - Student
Masterstudium i helsevitenskap – tverrfaglig spesialisering i psykisk helse-, rus- og avhengighetsarbeid, deltid Programplan
- Engelsk programnavn
- Master’s Programme in Health Sciences – Interdisciplinary Specialisation in Mental Health and Addiction, part-time
- Gjelder fra
- 2025 HØST
- Studiepoeng
- 120 studiepoeng
- Varighet
- 8 semestre
- Timeplan
- Her finner du et eksempel på timeplan for førsteårsstudenter.
- Programhistorikk
-
Innledning
Studiet er hjemlet i lov om universiteter og høyskoler og forskrift om studier og eksamen ved OsloMet - storbyuniversitetet.
Bestått studium kvalifiserer for graden master i helsevitenskap (engelsk: Master in Health Sciences) i henhold til § 3 i forskrift om krav til mastergrad. Masterstudiet innebærer spesialisering i én av følgende 15 spesialiseringer;
Spesialiseringer for søkere med helse- eller sosialfaglig bakgrunn:
Helsevitenskap
Empowerment og helsefremmende arbeid
Tverrfaglig spesialisering i psykisk helse-, rus- og avhengighetsarbeid
Rehabilitering og habilitering
Spesialiseringer for søkere med autorisasjon som helsepersonell innen angitt profesjonsområde:
Ernæringskompetanse for helsepersonell
Ergoterapi
Fysioterapi for barn og unge
Fysioterapi for eldre personer
Fysioterapi for muskelskjeletthelse
Psykomotorisk fysioterapi
Avansert klinisk allmennsykepleie
Helsesykepleie
Kreftsykepleie
Sykepleie - klinisk forskning og fagutvikling
Spesialisering for søkere med ernæringsfaglig bakgrunn:
Samfunnsernæring
I tillegg til gradsnavnet master i helsevitenskap fremkommer valgt spesialisering på vitnemålet.
Masterstudiet har et omfang på 120 studiepoeng. Enkelte av spesialiseringene går over to år på heltid, andre på deltid over 3 eller 4 år.
Masterprogrammet består av obligatoriske fellesemner, obligatoriske spesialiseringsemner og valgfrie emner, samt masteroppgave. Nærmere oversikt over studieløpet for den enkelte spesialisering fremkommer under Innhold og oppbygging.
En forutsetning for å kunne oppnå bærekraftig utvikling, ifølge FNs Agenda2030, er at alle skal kunne leve friske og sunne liv. Masterprogrammet i helsevitenskap retter seg primært mot FNs bærekraftsmål 3, God helse, men også bærekraftsmål 4, 5 og 10, om å kunne sikre en inkluderende, rettferdig og god utdanning og fremme muligheter for livslang læring for alle, samt å kunne fremme likestilling og å redusere ulikhet. Samtidig utgjør de 17 bærekraftsmålene en helhet, hvor alle målene må ses i sammenheng. Derfor er formålet med programmet å utdanne kandidater som er kvalifisert til å bidra til å sikre god helse og fremme livskvalitet for alle, uansett alder, kjønn, etnisitet, utdanning, seksualitet og funksjonsevne, og samtidig søke å ivareta andre bærekraftshensyn, inkludert livslang læring.
Studentene i dette studieprogrammet kan velge å spesialisere seg innen helsefremmende, sykdomsforebyggende, behandlende, lindrende og (re)habiliterende arbeid. Programmet gir kompetanse til å håndtere faglige problemstillinger på individ-, gruppe- og systemnivå, i nært samarbeid med andre profesjoner, pasienter, brukere, pårørende og andre tjenester. Kandidatene skal kunne bidra til trygge, virkningsfulle, helhetlige og integrerte tjenester med god ressursutnyttelse og til innovasjon, forbedringsarbeid og systematisk brukerinvolvering.
Relevans for arbeidsliv
Aktuelle arbeidsfelt og karriereveier etter endt studium kan være
forskning og fagutvikling innenfor helsevitenskap
undervisnings-, utviklings- og rådgivingsoppgaver innenfor helsefaglig veiledning, forvaltning og kunnskapsformidling
klinisk arbeid som bygger på spesialkompetanse
helse- eller sosialfaglige lederstillinger
Relevans for videre utdanning
Studenter på masterstudiet i helsevitenskap som skriver masteroppgave på 50 stp. kan underveis i masterstudiet søke opptak til forskerlinjen for helsevitenskap, som tilbys parallelt med og i forlengelse av masterstudiet. Forskerlinjen utvikler forskerkompetanse utover det et ordinært masterstudium gir og resulterer i en forskningsoppgave som kan inngå i et senere doktorgradsarbeid.
En kandidat med mastergrad i helsevitenskap er kvalifisert for å søke opptak til doktorgradsprogrammer, herunder ph.d.-programmet i helsevitenskap ved OsloMet.
Spesialiseringer
Masterstudiet i helsevitenskap tilbyr flere spesialiseringer. Søkere må foreta valg av spesialisering ved søknad om opptak til masterstudiet i helsevitenskap, ved at det søkes direkte på ønsket spesialisering. Det er forskjellige opptakskrav til de forskjellige spesialiseringene. Studenten vil imidlertid erfare at vesentlige deler av studiet gjennomføres sammen med studenter fra de øvrige spesialiseringene på programmet, dels gjennom obligatoriske fellesemner og dels gjennom valgmuligheter på tvers av spesialiseringene. Nærmere informasjon om dette fremkommer under Studiets innhold og oppbygging.
MAPSY: Tverrfaglig spesialisering i psykisk helse-, rus- og avhengighetsarbeid
Tverrfaglig spesialisering i psykisk helse-, rus- og avhengighetsarbeid skal kvalifisere til forebyggende, behandlende og rehabiliterende innenfor kommunale helse-, sosial- og velferdstjenester, psykisk helsevern og tverrfaglig spesialisert rusbehandling (TSB). Spesialiseringen er forskningsbasert, praksisbasert og erfaringsbasert, og møter samfunnets krav om likeverdige og kunnskapsbaserte tjenester. Det innebærer å ivareta menneskerettigheter, deltagelse og utviklingsmuligheter i samfunnet, og til å fremme god psykisk og fysisk helse for mennesker med psykisk helse-, rusmiddel-, og/ eller avhengighetsproblemer. De første 60 studiepoengene fyller kravet til forskrift om nasjonal retningslinje for tverrfaglig videreutdanning i psykisk helse-, rus- og avhengighetsarbeid (Kunnskapsdepartementet, 2022). Etter endt utdanning skal studenten kunne sette seg inn i forskning innen fagfeltet og kunne ta selvstendige faglige vurderinger og beslutninger i samhandling med den det i hovedsak gjelder, dens familie, nettverk og andre involverte i helse-, sosial- og velferdstjeneste. Praksis inngår i studiet.
For mer informasjon se forskrift om tverrfaglig videreutdanning i psykisk helse-, rus- og avhengighetsarbeid https://lovdata.no/dokument/SF/forskrift/2022-03-14-387.
Målgruppe
Reference is made to the Regulations relating to Admission to Studies at OsloMet. https://lovdata.no/dokument/SF/forskrift/2015-12-15-1681
1) Admission to all study directions in the master's degree programme requires:
Bachelor's degree in engineering
25 ECTS in mathematics
7.5 ECTS in physics, solid mechanics, building physics and/or thermodynamics
5 ECTS in statistics
An average grade of at least C (according to the ECTS grading scale) on your bachelor´s degree
Proof of your English proficiency: one of the following:
- English from a Norwegian or Nordic upper secondary school and a bachelor's degree from Norway or the Nordic countries
- at least 4 in English from Norwegian upper secondary school
2) Special requirements for the study directions:
Structural Engineering
Bachelor´s degree in civil engineering, mechanical engineering or marine engineering
20 credits in mechanics, statics or other courses in the field of structural engineering
Building Technology
Bachelor´s degree in civil engineering, mechanical engineering or energy & environment in buildings
Transport Infrastructure Engineering
Bachelor´s degree in civil engineering, mechanical engineering or marine engineering
Geotechnical Engineering
Bachelor´s degree in civil engineering, mechanical engineering, marine engineering or equivalent engineering discipline.
Smart Water Engineering
Bachelor´s degree in civil engineering, environmental engineering, electronic engineering, mechanical engineering, electronic engineering, chemical engineering or marine engineering
Opptakskrav
On completion of the Master's Degree Programme in Civil Engineering, candidates are expected to have the following learning outcome defined in terms of knowledge, skills and general competence:
Knowledge:
The candidate
has advanced knowledge in engineering and design of the built environment and deep insight in a specific area, depending on the choice of study direction (structural engineering, building technology, transport infrastructure engineering, geotechnical engineering or smart water engineering).
has in-depth knowledge of scientific theory and methods as well as knowledge of relevant policy and regulations used in the analysis and design of the built environment.
is able to evaluate climate and environmental effects on the built environment, and apply this knowledge in solving contemporary engineering problems.
is able to analyze questions/issues related to civil engineering based on the historical development of the discipline/subject area, new technology and societal needs for more sustainable design in the built environment.
Skills:
The candidate is able to
analyze and make use of scientific publications and technical literature in discussions and to justify engineering solutions.
work independently and in teams and make use of state of the art theories and methods, as well as policy and regulations, to solve practical and theoretical problems related to the built environment.
use suitable methods for research and development within the built environment in an independent manner or as part of a team.
use relevant software and Information and Communication Technology (ICT) tools in the analysis, design and visualisation of buildings, structures and processes.
carry out an independent, delimited research or development project under supervision and in accordance with applicable research ethical standards.
General competence:
The candidate is able to
analyze academic and professional ethical issues and make sound recommendations for the built environment, including their impact on sustainable development.
apply knowledge and skills to analyze and design infrastructure within structural engineering, building technology, transport infrastructure engineering, geotechnical engineering or smart water process and infrastructure engineering.
convey the results of independent work, both in writing and orally.
communicate on issues, analyses and solutions within the built environment, both with specialists and the general public.
contribute to the development of new structural and sustainable solutions.
Læringsutbytte
The programme is a full-time programme over two years that consists of a lecture-based component with a scope of 90 credits and an independent project - the master's thesis - with a scope of 30 credits.
Content
The master's degree programme is profession-oriented and adapted to meet the building construction and infrastructure industry and society's need for up-to-date, forward-looking expertise in structural engineering, building technology, transport infrastructure engineering, geotechnical engineering and smart water process and infrastructure engineering.
Structural engineering concerns the analysis, calculation and design of load-bearing structures and structural systems. Bridges, quays, offshore installations and other large building structures are exposed to great loads combined with environmental and climate impacts. The Finite Element Method (FEM) is used to determine load effects (stress and strain) in the different parts of such complex structures. The study programme focuses on providing the students with solid, theoretical knowledge and applied skills in linear and non-linear FEM analysis, design of structures and structural systems, and service life dimensioning and service life extension of structures. Theory and applied skills are taught in the courses MABY4100 Finite Element Method in Structural Analysis, MABY4400 Structural Analysis and Design, MABY4800 Advanced Materials and Technologies for Sustainable Structures and MABY4500 Sustainable Concrete Structures. Behaviour of structures under dynamic loads is covered in the course MABY5200 Structural Dynamics.
Building technology concerns the analysis, calculation and design of the body of the building, including facades and building envelopes. Climate change and increased focus on resource use and environmental impacts thereby also entail a greater focus on the choice of materials and climate adaptation in connection with the design of buildings. The study programme focuses on providing the students with more detailed knowledge of building physics processes, principles and methods, and an understanding of the importance of the choice of building materials and components in the design of energy-efficient, environmentally friendly, climate-resilient buildings. Here, life-cycle analyses (LCA) and sustainability assessments are important tools for decisions on the choice of materials and building solutions. Theory and applied skills are taught in the courses MABY4200 Building Physics and Climate Adaptation of Buildings, MABY4700 Life Cycle Assessment for Built Enviroment, MABY4600 Sustainable Building Design and MABY4900 Timber Building Engineering. Computational fluid dynamics in and around buildings as well as structures are covered in the course MAEN4300 Fluid Dynamics and Computational Methods.
Transport infrastructure engineering concerns the analysis, calculation, design and management of transport infrastructure systems. Roadways and railways are typical transport infrastructure systems and they must be well designed and managed to provide safe and resilient support to traffic that is ever-changing with the advancement in the transport technology and increase in societal demand for multi-modal future-oriented transportation forms. Besides, existing transport infrastructure systems also need to be taken care of to ensure safe functionality. This specialization is built upon theory and applied skills in the field of transport infrastructure engineering. the courses cover a range of topics, including SMUA4200 Traffic Engineering and Intelligent Transport Systems, MABY5030 Advanced Pavement Design and Rehabilitation and MABY5040 Advanced Railway Engineering. In addition, important knowledge and skills of sustainability assessment are offered in the common course of MABY4700 Life Cycle Assessment for Built Environment and students have the possibilities to also choose courses within relevant structural and geotechnical engineering topics.
Geotechnical engineering concerns Engineering behaviours of earth materials such as soils and rocks to find solutions for various engineering problems. It is typically linked with hydrological, geological, and geophysical engineering. Geotechnical engineering is not only applicable to civil engineering but also to mining engineering, petroleum engineering, and offshore structures and foundations. Compared with other civil engineering directions, the tasks of a geotechnical engineer comprise more site-based field investigation and laboratory testing to classify relevant properties of geo materials with large variations to engineering design. This specification is fundamentally built upon the deep understanding of soil mechanics which will be taught in the course, MABY5410 Advanced Soil Mechanics. This course will provide a conceptual model for soil classification, cover soil mechanics for simple but widely applied models to the advanced framework and also highlight their engineering applications and typical state of art technics applied in this field. After this course, MABY5420 Geotechnical Site Investigation and Ground Modelling, MABY5440 Geotechnical Models and Simulations, MABY5460 Environmental Geotechnics, MABY5450 Urban Geotechnics, and MABY5430 Foundation Solutions will follow. This study specialisation provides students with abilities to handle tasks through all phases of geotechnical designs; from site investigation and soil testing, to proposed engineering solutions, to design validation at the end, based on solid theoretical knowledge.
Smart water engineering concerns the analysis, design and management of urban water resource processes and infrastructure. Water is an essential resource with strong links to energy and food production and urban water systems represent one of the largest water pollutant sources globally. Implementing state-of-the-art and innovative technology rather than conventional resource intensive ones is key to adapt in the future. As we move towards a hyper-connected urban infrastructure, data collection, decision support and process control form the need for future practitioners within smart water process and infrastructure. This specialization extends on the existing programme in civil engineering, offering the common courses of MABY4700 Life Cycle Assessment for Built Environment, MAEN4300 Fluid Dynamics and Computational Methods, SMUA4600 Geophysical Information Systems, MABY5050 Smart Infrastructure and Asset management and MABY5060 Managing Infrastructure Projects. The study specialisation focuses on providing the students with solid, theoretical knowledge and applied skills in the field of smart water process and infrastructure taught in the courses MABY5310 Urban pipe Systems, MABY5320 Bioprocess Technology, MABY5330 Water Resource Recovery Technology, MABY5340 Water Infrastructure, Trenches and No-Dig, MABY5350 Sensor Networks and Model Based Decisions Support and MABY5360 Design and Optimisation Projects.
Students are enrolled to one of the study directions from semester one.
Projects in the built environment are increasingly complex and interdisciplinary. The study programme focuses on teaching students how to use advanced computer programs and simulation tools to solve complex problems relating to their study directions.
The study programme also aims to qualify candidates with the competence to participate in research work in the field. All the courses taught in the second semester therefore include an element of research at different levels. The course MAEN5300 Research Methods and Ethics underpins the master's thesis and provides an introduction to research methods, ethics, and academic writing and dissemination of results.
The master's thesis will give the students the opportuinity to apply their knowledge and skills to relevant issues through more comprehensive project work. MABY5900, the master's thesis, is an independent, supervised research or development project in the core areas of the field, and represents further specialisation in either structural engineering, building technology, transport infrastructure engineering, geotechnical engineering or smart water process and infrastructure engineering.
The structure of the programme
The master's degree programme consists of compulsory courses, elective courses and a master's thesis. The course portfolio is composed so that the compulsory courses ensure academic and professional breadth, at the same time as the students are given an opportunity for in-depth study and specialisation through elective courses and the master's thesis.
Specialisation in the field of ‘structural engineering’ - SE requires the students to choose, in addition to the mandatory courses:
In the second semester, the following two courses:
MABY4400 Structural Analysis and Design (10 credits)
MABY4800 Advanced Materials and Technologies for Sustainable Structures (10 credits)
In the third semester, at least one course between the following two:
MABY4500 Sustainable Concrete Structures (10 credits)
MABY5200 Structural Dynamics (10 credits)
Specialisation in the field of ‘building technology’ - BT requires the students to choose, in addition to the mandatory courses:
In the second semester, the following two courses:
MABY4600 Sustainable Building Design (10 credits)
MABY4900 Timber Building Engineering (10 credits)
In the third semester, at least one course between the following two:
MABY4500 Sustainable Concrete Structures (10 credits)
MAEN4300 Fluid Dynamics and Computational Methods (10 credits)
In this way, students in both specialisations, i.e. SE and BT, get the opportunity to also choose some from the ‘transport infrastructure engineering’ elective courses (max. 1 per semester, i.e. in second and third semesters)
Specialisation in the field of ‘transport infrastructure engineering’ - TI requires the students to choose, in addition to the mandatory courses:
In the first semester, one courses from the following two courses:
MABY4100 Finite Element Method in Structural Analysis (10 credits)
MABY5420 Geotechnical Site Investigation and Ground Modelling (10 credits)
In the second semester, two courses from the following three courses:
MABY4400 Structural Analysis and Design (10 credits)
SMUA4400 Transport Modelling and Analytics (10 credits)
SMUA4600 Geographical Information Systems (10 credits)
In the third semester, two courses from the following four courses:
MABY4500 Sustainable Concrete Structures (10 credits)
MABY5200 Structural Dynamics (10 credits)
MABY5050 Smart Infrastructure and Asset Management (10 credits)
MABY5060 Managing Infrastructure Projects (10 credits)
Specialisation in the field of `geotechnical engineering´ - GEO requires the students to choose, in addition to the mandatory courses
In the second semester, one course from the following four courses:
MABY4400 Structural Analysis and Design (10 credits)
MABY4800 Advanced Materials and Technologies for Sustainable Structures (10 credits)
MABY5030 Advanced Pavement Design and Rehabilitation (10 credits)
MABY5040 Advanced Railway Engineering (10 credits)
In the third semester, one course from the following five courses:
MABY4100 Finite Element Method in Structural Analysis (10 credits)
MABY5000 Civil Engineering Seminars and Projects (10 credits)
MABY5050 Smart Infrastructure and Asset Management (10 credits)
MABY5060 Managing Infrastructure Projects (10 credits)
MABY5200 Structural Dynamics (10 credits)
All courses in the `smart water engineering´ - SWAPIE specialisation are mandatory, with no elective available for students to select.
In order for students to be formally assigned a supervisor for the master's thesis, all exams from first year of the study programme must be passed.
Students are encouraged to contact private and public enterprises in the region for the purpose of gaining practical training and experience in the fields through a summer job or similar, and to establish cooperation on project assignments.
Arbeids- og undervisningsformer
Both the language of instruction and the course literature are in English, which means that the study programme is well suited for international students and student mobility. The study programme is structured so that it is possible for the students to take one semester abroad, in the third or fourth semester.
Students can gain approval and recognition of up to 30 credits on application. Students who go on an exchange in the fourth semester will write their master's thesis with a supervisor from the host institution.
OsloMet is part of the Erasmus programme for student exchange and has entered into several Erasmus+ agreements with relevant universities and university colleges. OsloMet has a dedicated web page with supplementary information about student exchanges: https://student.oslomet.no/utveksling-tkd
Praksisstudier
Required coursework means compulsory assignments or activities that must be approved within a given deadline in order for students to be able to take the exam. The coursework requirements in this study programme are linked to written assignments and compulsory attendance. The coursework requirements are described in more detail in the individual course descriptions.
Coursework requirements are set in order to promote the student's progress and development and to ensure his/her participation in necessary elements of the programme. Required coursework can also be set to ensure that students achieve a learning outcome that cannot be tested in an exam.
Required coursework is assessed as approved or not approved. In the event of delays in study progress, previously approved coursework remains valid for two years, provided that the course has not changed.
Valid absence documented by e.g. a medical certificate does not exempt students from meeting the coursework requirements. Students who fail to meet the coursework requirements within the deadline due to illness or for other documented valid reasons should as far as possible be given a new chance before the registration deadline for the exam. This must be agreed with the person responsible for the course on a case-by-case basis. If another attempt at meeting a coursework requirement is not possible because of the nature of the subject/course, the student must be prepared to meet the coursework requirements on the next possible occasion. This may result in delayed progress in the programme.
Internasjonalisering
Assessment and grading shall take place in accordance with the provisions on assessment relating to Universities and University Colleges and the Regulations relating to Studies and Examinations at OsloMet.
The forms of assessment used shall promote learning and document that the students' competence is adequate in relation to the applicable learning outcome. The forms of assessment used in this study programme include supervised written exams, oral exams, individual and group project assignments and portfolio assessments. Assessment of the master's thesis and the oral presentation of the thesis come in addition to this.
The forms of assessment and grade scale are described in more detail in the individual course descriptions. In connection with the final assessment in the course, a grade scale with grades from A to E for pass (A being the highest) and F for fail is used, or the assessment pass/fail.
The master's degree programme is profession-oriented, which means that students are to a significant extent assessed on the basis of their ability to solve problems, and on whether their presentations of solutions meet technical, academic and ethical requirements. Project assignments with reports and presentations are therefore one of the dominant assessment forms used in the study programme.
The tuition takes place in English, and assignments/exams will also be in English. Students may, by agreement with the person responsible for the course, submit assignments in Norwegian (Scandinavian). The assignment given in the elective course (specialisation course) in the third semester and the master's thesis should be in English.
For courses where the assessment is based on both a project assignment and a written/oral exam, students must pass both the project assignment and the exam to be awarded a pass grade in the course.
Oral exams shall be assessed by two examiners, as this form of assessment cannot be appealed.
The master's thesis will be assessed by an external and an internal examiners. In addition to submitting a written report, students must also give an oral presentation of the thesis to the examiners and supervisor(s). The examiners will set the grade for the master's thesis after the oral presentation and questioning. Exams and portfolios that are only assessed by internal examiners shall regularly be selected for external assessment. Guildeline for master's theses at the Faculty can be found here: Retningslinjer for masteroppgaver ved Fakultet for teknologi, kunst og design - Student - minside (oslomet.no)
Students have the right to demand an explanation for and to appeal against a grade awarded and/or formal errors in connection with exams in accordance with Section 5-3 of the Act relating to Universities and University Colleges.
In connection with portfolio assessments, students can normally only appeal against the final grade awarded for the portfolio, and only if it contains verifiable components. If the portfolio assessment cannot be appealed, two examiners are used.
Students must register for resit/rescheduled exams themselves. Resit/rescheduled exams are normally organised jointly, early in the following semester. Oral exams can also be used in the event of resit/rescheduled exams.
After completing the programme, students will be awarded a diploma showing all their final grades (final assessments) in the courses that form the basis for the degree. The title of the master's thesis will also be included on the diploma.
Arbeidskrav og obligatoriske aktiviteter
Quality assurance
The purpose of OsloMet's quality assurance system is to strengthen students learning outcomes and development by raising the quality at all levels. Cooperation with the students, and their participation in the quality assurance work, is decisive to the overall learning outcome. Among the overall goals for the quality assurance system is to ensure:
- that the educational activities, including practical training and the learning and study environment, maintain a high level of quality
- that the study programmes are relevant for the professional fields
- that the quality development continues to improve
For the students, this entails, among other things, student evaluations in the form of:
- course evaluations
- annual student surveys for all of OsloMet
More information about the quality assurance system is available here: https://student.oslomet.no/regelverk#etablering-studium-evaluering-kvalitetssystem
The programme supervisor scheme is part of the quality assurance of each individual study programme. A programme supervisor is not an examiner, but someone who supervises the quality of the study programmes. All study programmes at OsloMet shall be subject to supervision by a programme supervisor, but there are different ways of practising the scheme. Reference is made to the Guidelines for Appointment and Use of Examiners at OsloMet: https://student.oslomet.no/regelverk
Vurdering og sensur
I studiet benyttes ulike vurderingsformer som er tilpasset læringsutbyttene i de ulike emnene. Vurderingsformene skal både understøtte læringen og dokumentere studentenes kompetansenivå med utgangspunkt i forventet læringsutbytte. Vurderingsformer og -kriterier er beskrevet i hver emneplan. Alle avlagte emner vil framkomme på vitnemålet, samt tittelen på studentens masteroppgave. I dette studiet brukes i hovedsak følgende eksamensformer:
Skriftlig eksamen under tilsyn
Gjennomføres ved universitets eksamenslokaler over et gitt antall timer.
Hjemmeeksamen
Går over en tidsbegrenset periode avslutningsvis i emnet, normalt med oppgitt problemstilling/oppgavesett dersom ikke annet er angitt i emneplanen.
Prosjekteksamen
Går over hele eller store deler av emnet, normalt med egendefinert problemstilling dersom ikke annet er angitt i emneplanen.
Muntlig eksamen
Gjennomføres individuelt eller i gruppe. Kan være selvstendig vurdering eller justerende til annen eksamen.
Praktisk eksamen
Vurdering av spesifikke praktiske ferdigheter gjennomføres ved universitet eller i praksisfeltet.
Vurderte praksisstudier
Veiledede praksisstudier, som vurderes i tråd med forskrift om studier og eksamen ved OsloMet – storbyuniversitetet Kapittel 8.
Vurdering av eksamen og praktiske studier gjennomføres etter gjeldene regler gitt i lov om universiteter og høgskoler, forskrift om studier og eksamen ved OsloMet og retningslinjer for oppnevning og bruk av sensor ved OsloMet.
Eksamen
Hvert emne avsluttes med en eksamen. Vurderingen tar utgangspunkt i emnets læringsutbytte, og man vurderer i hvilken grad studenten har oppnådd det angitte læringsutbyttet. I de teoretiske emnene benyttes enten vurderingsuttrykket bestått/ikke bestått eller bokstavkarakterer fra A til F, der A er beste karakter og E er dårligste karakter for å bestå eksamen. Karakteren F innebærer at eksamen ikke er bestått. Ved vurdering av praksisstudier brukes karakteren bestått/ikke bestått.
Ny og utsatt eksamen gjennomføres på samme måte som ordinær eksamen hvis ikke annet er angitt i emneplanen. Ved ny og utsatt eksamen i emner med gruppeeksamen kan det i spesielle tilfeller være aktuelt å gjennomføre eksamen individuelt.
Ved eksamener der det foretas uttrekk av en prosentandel av besvarelsene for vurdering av ekstern sensor, skal ekstern sensors vurdering komme alle studentene til gode. Ekstern og intern sensor sensurerer i slike tilfeller først besvarelsene som er trukket ut. Intern sensor fortsetter deretter sensuren sammen med en annen intern sensor. Vurderingene fra første del oppsummeres og er retningsgivende for de to interne sensorenes vurdering.
Sensuren ved skriftlig eksamen kan påklages, jf. universitets- og høyskoleloven § 5-3 og forskrift om studier og eksamen ved OsloMet. Det er ikke mulig å klage på karakterfastsetting ved muntlige og praktiske eksamener. Ved gruppeeksamen vil resultatet av klagen bare ha konsekvenser for den eller de som har klaget. Øvrige studenter i gruppen beholder sin opprinnelige karakter.
Tilsynssensor
Det er tilknyttet tilsynssensor til enkelte emner i studiet i tråd med retningslinjer for oppnevning og bruk av sensor ved OsloMet.
Skikkethetsvurdering
Skikkethetsvurdering er en løpende helhetsvurdering som pågår gjennom hele utdanningen. En student må være skikket for yrkesutøvelse for å kunne motta sluttdokumentasjon for fullført utdanning.
Hvis en student ser ut til å kunne skade liv, fysisk og psykisk helse, rettigheter eller sikkerhet for pasienter, brukere eller andre studenten møter under praksis eller kommer til å møte under senere yrkesutøvelse, bør det stilles spørsmål ved om studenten passer for yrkesutøvelsen. Ansatte på universitetet, i praksisfeltet og medstudenter kan melde fra om tvil. Studenter skal informeres så snart som mulig hvis en slik tvilsmelding er sendt. De skal få veiledning og råd om hvordan de kan forbedre seg, eller råd om å avslutte utdanningen.
https://student.oslomet.no/skikkethetsvurdering
Skikkethetsvurdering benyttes i spesialisering i helsesykepleie, spesialisering i kreftsykepleie og tverrfaglig spesialisering i psykisk helse-, rus- og avhengighetsarbeid.
Øvrig informasjon
Programplan ble godkjent i Utdanningsutvalget HV 12.02.2020, med siste endringer godkjent av prodekan for utdanning 13. mars 2025.
Etablert av universitetsstyret 09.09.2020
Fakultet for helsevitenskap (HV)
Programplanen gjelder for kull 2025