EPN-V2

Master’s Programme in Mechanical Engineering Programplan

Engelsk programnavn
Master’s Programme in Mechanical Engineering
Gjelder fra
2024 HØST
Studiepoeng
120 studiepoeng
Varighet
4 semestre
Programhistorikk

Innledning

The Master's Degree Program in Mechanical Engineering is a full-time program with a duration of two years (120 ECTS), being a continuation of the bachelor's degree program in Mechanical Engineering.

The program is campus-based, and it comprises modules that are mostly theoretical and computational in nature. These are accompanied by experimental experience. The program covers three subdisciplines of Mechanical engineering that are closely tied with the industry: fluid mechanics, solid mechanics, and mechatronics.

The program contains 70 ECTS of mandatory courses to provide a foundation in all the listed subdisciplines. The elective courses and the master’s thesis enable students to further obtain expertise in one or more of the subdisciplines.

The master’s program contains the courses and modules essential to the development of highly skilled mechanical engineers capable of developing solution strategies for engineering problems, problem solving, evaluating solutions, and thinking critically about them. The program provides enough background knowledge and skills for specialized expertise, both as expected by relevant sectors in industry, and for the pursuit of a PhD in Mechanical Engineering.

In addition, students learn to reflect profoundly about the development of an increasingly sustainable world, in line with the UN sustainable development goals. With an ever-increasing demand in developing environmentally friendly and sustainable solutions, the futuristic trends in major technology sectors require the use of fundamental concepts in physics and natural sciences and the implementation of these in the form of engineering solutions, to guide the direction of development and facilitate decision making for management in complex industrial environments.

Målgruppe

Our target group includes individuals with a bachelor's degree in mechanical engineering (or a closely related discipline covering material properties and energy) who are interested in an expert role as well as the option to pursue an academic career.

Opptakskrav

To apply for this programme you must have one of these:

  • a bachelor's degree in Engineering (Mechanical, Aeronautical, Aerospace, Civil, Mechatronics/Robotics or Energy and Environment in Buildings) or a bachelor's degree in Applied Mathematics or Physics, and at least 21 ECTS in mathematics (excluding statistics) and 10 ECTS in programming
  • a bachelor's degree in Engineering in the disciplines of Electronics, at least 21 ECTS in mathematics (excluding statistics), 10 ECTS in programming and 15 ECTS in solid mechanics, fluid mechanics and mechatronics
  • a bachelor's degree in Engineering in the disciplines of Chemistry or Biotechnology, at least 21 ECTS in mathematics (excluding statistics), 10 ECTS in programming and 30 ECTS in solid mechanics, fluid mechanics and mechatronics

You need an average grade of at least C (according to the ECTS grading scale) on your bachelor's degree.

You also need one of the following:

  • English from a Norwegian or Nordic upper secondary school and a bachelor's degree from Norway or the Nordic countries
  • at least 4 in English from upper secondary school
  • proof of your English proficiency

More about admission to master's programmes.

Læringsutbytte

After the completion of the master’s degree program in Mechanical Engineering, candidates are expected to have achieved the learning outcomes listed below. These are defined in terms of knowledge, skills, and general competence, in accordance with the Norwegian Qualifications Framework (NQF):

Knowledge:

The candidate

  • can identify the main scholarly theories, models and methods in solid mechanics, fluid mechanics and mechatronics  
  • can determine suitable procedures to solve problems in Mechanical engineering, including analytical, computational and/or empirical methods 
  • can explain the main notions on environmental impact, energy efficiency, and product life cycle, with respect to design and product 
  • can explain how sustainability can be optimized using mathematical analysis and simulation methods 
  • can identify relevant information from technical and/or scientific literature  
  • can define the scientific method and the main ethical norms with regards to intellectual property that apply to the reporting of scientific work.

Skills:

The candidate

  • can analyze and apply existing theories and methods to solve practical and theoretical problems in mechanical engineering, both independently and in teams 
  • can translate and combine abstract theoretical models from fluid mechanics, solid mechanics, and mechatronics to solve complex problems the field 
  • can design and implement technical solutions to problems that represent real-life scenarios 
  • can apply software and technical tools that, in complexity and scale, are representative of industry scenarios  
  • can conduct independent research and development projects under supervision, in accordance with the scientific method and the applicable norms of research ethical standards
  • can apply mathematical methods and simulations to optimize environmental impact, energy efficiency and product life cycle 
  • can analyze scientific and technical literature to identify the state-of-the-art and get updated in the field as technology progresses into new areas within society, and to formulate scholarly arguments   
  • can document independent research in the form of a report or scientific article, following the ethical protocols of research, including suitable citation styles
  • can identify and communicate common aspects and challenges in their field to peers from Mechanical engineering field

General competence:

The candidate

  • can analyze relevant academic, professional, and ethical problems in Mechanical Engineering, and use knowledge to give comprehensive recommendations
  • can combine knowledge and skills to conduct advanced assignments and projects   
  • can communicate independently about issues, analyses, and conclusions, both orally and in written form, using professional terminology, with a relevant audience 
  • can contribute to new thinking and innovation processes and reflect about the role and responsibility as an engineer in working towards sustainable development 
  • can use relevant technological knowledge and scientific methods and principles when planning and conducting research

Innhold og oppbygging

The MSc program is a full-time program, with a duration of two years, which consists of a 90 ECTS lecture-based component, in addition to the master's thesis, a 30 ECTS independent research project.

Content

The program is designed so that, firstly, students acquire competence in core mechanical engineering subjects and develop their analytical and numerical skills through the mandatory courses. Subsequently, through the elective courses and the master’s thesis, students obtain expertise in one or more of the three subdisciplines:

  • Mechatronics
  • Solid mechanics
  • Fluid mechanics

Mechatronics is the discipline at the crossroad where mechanical, electronic, and electrical engineering meet. It also touches on related fields like robotics, computer science, and control engineering. The courses in mechatronics give a wide breadth of knowledge on the basics of the field, and additionally go into details on selected advanced topics.

Students gain practical experience working with a wide range of sensors and sensing techniques based on different physical properties. They also learn about diverse types of actuators, as well as power transmission systems and different control algorithms.

Modelling, simulation, and control of robotic and mechatronic systems are also covered extensively. The focus is placed on real life problems and hands-on experience, with state-of-the-art techniques, and provides students with tools to analyze and solve a wide range of problems in industry and academia.

Solid Mechanics provides a deep understanding of specific subjects within solid mechanics. Finite element methods are among the most versatile numerical methods used in analysis and design of machinery and structures subjected to static, dynamic, and thermal loads or to electromagnetic fields. Several pieces of software are developed based on the implementation of different formulations of the method. Both in-house coding and commercial program awareness render possible for students to gain the knowledge and skills required for successful pre-processing and simulation of models and to interpret the results in postprocessing. The subject of structural integrity and impact is very wide and encompasses several related industries. The methods used for the evaluation of systems subjected to cyclic or impact loads are usually hybrid and include experimental and semi-empirical as well as analytical and numerical methods.

Computational solid mechanics goes beyond the finite element methods and includes weighted residuals, boundary element, and meshless methods besides numerical implementation of nonlocal continuum theories e.g., peridynamics. The knowledge of these methods and their weak and strong points allows for the correct choice of the method of analysis a priori and saves time and effort which would otherwise be squandered pondering why finite element is not the most efficient tool. Structural integrity encompasses several advanced topics such as fracture and damage mechanics, fatigue, and accidental extreme loads. One of the important topics which allows for inclusion of several advanced subjects is impact. Impact mechanics deals with blast and ballistic loading as well as lower rate scenarios. Such phenomena are strongly associated with plasticity, damage, and fracture. A study of the topic therefore gives students a better understanding of these associated fields and prepares them for a wider view of the field. The program also provides knowledge of materials technology and the relevant properties of materials that enable advanced applications.

Fluid mechanics covers the physics of fluids (liquids, gases, and plasma) and how forces act on them. The master’s program will give insight into advanced computational fluid dynamics (CFD), fluid-structure interaction (FSI), and sustainable energy.

Advanced CFD deals with computational simulation of fluid motion in a discretized fluid medium and solving the Navier-Stokes equation for incompressible and compressible flows with specific attention paid to turbulence and dissipation of energy. Students will learn to understand both the benefits and limitations of using industrial CFD tools to solve engineering problems.

Fluid-structure interaction is a multiphysics problem which deals with a domain comprising at least two subdomains of fluid and solid materials. By the time the student takes up the course they have the knowledge of solids and fluids and how to solve problems in each subdomain separately. The most important aspect of FSI is thus to enable methods to link the subdomains across the interface on response parameters. The method finds its applications in ship and marine structures, wind turbines, as well as offshore oil and gas industries. The course in sustainable design and manufacturing of energy systems provides relevant concepts for the reduction of materials and energy use, life cycle assessment, and circular economy related to energy systems.

The structure of the program

The master's degree program consists of seven mandatory courses, elective courses, and a master's thesis / dissertation. Advanced Engineering Mathematics is a general course. The remaining mandatory courses are either covering solid mechanics, fluid mechanics and/or mechatronics.

Solid mechanics:- Continuum Mechanics and Thermodynamics- ​Advanced Materials​- Finite Element Method Fluid mechanics:- Computational Fluid Dynamics

Mechatronics:

- Introduction to Mechatronics

- Practical Mechatronics

The available elective courses are:

- Structural Integrity and Impact (Solid mechanics)

- Fluid structure interaction (Fluid mechanics)

- Sustainable design and manufacturing of energy systems (Fluid mechanics)

- ACIT4740 Rehabilitation and Assistive Devices (Mechatronics) (the course is from ACIT master’s program)

- ACIT4820 Applied Robotics and Autonomous Systems (Mechatronics) (the course is from ACIT master’s program)

In the fourth semester, students will work independently on their master’s thesis.

Valgfritt emne Løper over flere semestre

1. studieår

1. semester

2. semester

2. studieår

3. semester

4. semester

Elective courses

Arbeids- og undervisningsformer

Videreutdanning i epilepsi, helseveiledning og kvalitetsforbedring i praksis, er en heldigital tverrprofesjonell utdanning som består av to emner og utgjør totalt 30 studiepoeng. De to emnene som inngår er VEKU6000 Epilepsi og helseveiledning og VEKU6100 Kvalitetsforbedring i praksis innen epilepsiomsorg. Formålet med utdanningen er å øke kunnskapsnivå blant helse- og sosialfaglige profesjoner for å kunne forbedre tjenestetilbudet til mennesker med epilepsi.

;

Å bistå mennesker med epilepsi krever profesjonell kunnskap. Denne videreutdanningen møter dette behovet ved å innlemme teoretiske-, praktiske- og holdningsmessige forhold som tar utgangspunkt i personenes totalsituasjon. Studiet bygger på velferdspolitiske prinsipper, og helseveiledning har en sentral plass i utdanningen fordi det er avgjørende for å fremme egenmestring.

;

Epilepsi er en av de vanligste nevrologiske sykdommene. Det er ikke én sykdom, men en paraplybetegnelse på en rekke tilstander med forskjellige årsaker, ytringsformer og prognoser. Fellesnevneren er tilbakevendende epileptiske anfall. Rundt tre prosent av befolkningen vil få en epilepsidiagnose i løpet av livet og ca. halvparten får diagnosen før de fyller 16 år.

Stigma og psykososiale tilleggsplager er velkjent særlig blant barn og unge. Tidlig intervensjon i form av undervisning og veiledning regnes som avgjørende for å forebygge negativ sosial utvikling hos barn og unge. Personsentrert fokus, med utgangspunkt i den enkeltes opplevelse og reaksjoner på det å leve med epilepsi, står sentralt. Med dette utgangspunktet vektlegges ulike tilnærminger som kan bidra til å støtte en sunn livsstil og fremme mestring.

;

Gjennom studieopplegget presenteres pasienter/brukere med epilepsi i alle aldre, med ulike sykdomstilstander, skader og funksjonsnivå. Studentene får konkret innføring i ulike veiledningsstrategier og gjennom studiet får de erfaring med ulike veilednings- og undervisningsmetoder.

;

Studiet gir også kompetanse i kvalitetsarbeid gjennom innføring i ulike metoder for kvalitetskontroll og -forbedring. Som student får du anledning til å fordype deg i et konkret forbedringsprosjekt som tar utgangspunkt i en relevant problemstilling ved eget arbeidssted.

;

Selvstendig studieinnsats er vektlagt, og aktiv deltakelse på nettbaserte plattformer sammen med medstudenter. Gjennom digitalt samarbeid får du trening i å stille åpne spørsmål, være aktivt lyttende og gi og ta imot konstruktiv tilbakemelding.

;

Utdanningen er utviklet i tett samarbeid mellom arbeidsliv, gjennom en bredt sammensatt referansegruppe, studenter og utdanningsinstitusjon. Spesialsykehuset for epilepsi (SSE) har vært en sentral aktør i utviklingen av studiet og vil også bidra som ressurs i gjennomføringen sammen med Institutt for sykepleie og helsefremmende arbeid (SHA) og Institutt for atferdsvitenskap (AV).;

;

Relevans for arbeidsliv

Etter endt utdanning vil studentene ha gode forutsetninger for å følge opp brukere/pasienter med sammensatte vansker ved epilepsi. De vil også kunne veilede kollegaer i epilepsirelaterte spørsmål, delta i faglig forbedringsarbeid og inngå i tverrprofesjonelle team.

;

I fremtiden vil flere motta tjenester i en eller annen form i eget hjem. Mange personer med epilepsi har behov for kompetent oppfølging, noe som mangler i kommunene. Behandlingsmetodene i fagfeltet er i stor utvikling. Likevel kan det se ut til at sårbare grupper med vanskelig regulerbare epilepsiformer ikke får god nok oppfølging. Det planlagte utdanningstilbudet vil derfor imøtekomme et etterspurt behov i landets mange kommuner. Utdanningen er også relevant for epilepsisykepleiere ved landets poliklinikker.

Relevans for videre utdanning

Studiet er kunnskapsbasert og bygger på forskning, erfaringsbasert kunnskap, brukerkunnskap, og brukermedvirkning, noe som er i tråd med samfunnets krav. Gjennom studiet stilles det økende krav til refleksjonsnivå og utvikling av analytisk holdning og vurdering. Studentene tilegner seg kompetanse slik at de kritisk kan vurdere teoretisk kunnskap, erfaringer og egne handlinger.

;

Utdanningen ligger på bachelornivå, og planen for studiet bygger på Lov om universiteter og høyskoler og forskrift om studier og eksamen ved OsloMet - storbyuniversitetet.

Internasjonalisering

Målgruppen for utdanningen er ansatte i helse- og omsorgstjenesten, (re)habiliteringstjenesten eller poliklinikk. Utdanningen kan også være aktuell for dem som arbeider innen pedagogisk virksomhet med elever som har epilepsi.

Arbeidskrav og obligatoriske aktiviteter

A coursework requirement is a compulsory piece of work/activity that must be approved before the student may take an examination. Coursework requirements are assessed as either "approved" or "not approved".

The coursework requirements in this master’s program include projects, written reports, oral presentations, mandatory exercises, and laboratory exercises. These mandatory assignments can be individual or in groups. The coursework requirements for each individual course are listed in the course description for that specific course.

Vurdering og sensur

The forms of assessment are designed to best fit the learning outcomes of the program and to verify that the students have acquired them. Assessment methods vary between different courses, and include written reports, portfolio assessment, oral examinations (oral presentations and oral defenses), and written exams.

The forms of assessment and grade scale are described in detail in the individual course descriptions. Two alternative grading scales can be used: A-F scale, with A to E for pass (A being the highest grade) and F for fail; or pass/fail grading scale.

The master's thesis is assessed by an evaluation team conformed by two examiners, one external and one internal. In addition to submitting a written report, students must also give an oral presentation of the thesis. The examiners set the grade for the master's thesis after the oral presentation and questioning. The thesis supervisor is not involved in the assessment of the thesis’ grade. This form of assessment is applied in several other courses as well. This is to ensure that students are comfortable with the assessment form in advance of the thesis project.

The students' rights and obligations are set out in Regulations relating to studies and examinations at OsloMet, https://student.oslomet.no/en/acts-regulation. These regulations describe the conditions for resetting/rescheduling exams, the right to appeal (written examinations can be appealed, oral exams cannot be appealed), the definitions of cheating in exams, etc. Students are responsible for their registration in resist or rescheduled exams.

Students are responsible for familiarizing themselves with these rules and regulations.

Guildeline for master's theses at the Faculty can be found here: Retningslinjer for masteroppgaver ved Fakultet for teknologi, kunst og design - Student - minside (oslomet.no)

Øvrig informasjon

Etter fullført utdanning har kandidaten følgende læringsutbytte definert i kunnskap, ferdigheter og generell kompetanse:

;

Kunnskap

Kandidaten

  • har inngående kunnskap om kompleksiteten ved epilepsi og anfallsklassifisering
  • kan gjøre rede for metoder for brukermedvirkning på individ- og systemnivå
  • har inngående kunnskap om modeller og metoder for å fremme samarbeid og kvalitetsforbedring i helsetjenestene

;

Ferdigheter

Kandidaten

  • kan anvende kunnskapsbaserte metoder i kommunikasjon og veiledning for å sikre personsentrert omsorg til mennesker med epilepsi
  • kan identifisere etiske dilemmaer ved bruk av teknologi og digitale løsninger overfor sårbare pasient- og brukergrupper
  • kan anvende oppdatert kunnskap om helse- og velferdssystemet, lover, regelverk og veiledere i sin tjenesteutøvelse
  • kan anvende verktøy og metoder i kvalitetsforbedring og bidra til implementering av nye og bedre metoder i tjenestene til mennesker med epilepsi

;

Generell kompetanse

Kandidaten

  • kan analysere ulike perspektiver, foreta faglige avgjørelser i tråd med kunnskapsbasert praksis
  • kan reflektere over betydningen av god ledelsesforankring i systematisk kvalitetsforbedringsarbeid
  • kan reflektere over hvordan mangfold og antidiskriminering har betydning for individuell tilpasning og samarbeid