EPN-V2

Master’s Programme in Mechanical Engineering Programme description

Programme name, Norwegian
Master’s Programme in Mechanical Engineering
Valid from
2025 FALL
ECTS credits
120 ECTS credits
Duration
4 semesters
Schedule
Here you can find an example schedule for first year students.
Programme history

Introduction

Gjennom hele studiet legges det opp til varierte arbeidsformer med studentaktive arbeidsmetoder, avhengig av tema og studieoppgaver. Det forutsetter at studentene deltar i seminargrupper der oppgaver løses både sammen med andre og individuelt. Arbeidsformene vil også variere fra fag til fag. Eksempler på dette er rollespill og casearbeid i pedagogikk og elevkunnskap, regneverksteder i matematikk, øvelser i muntlig formidling i norsk, strukturelle filosofiske samtaler i RLE, «Tren tanken» i samfunnsfag, ekskursjoner i kroppsøving, praktiske forsøk i naturfag, skapende arbeid i musikk og mye mer. I alle fag integreres digitale læringsressurser.

Target group

Praksis er nærmere beskrevet i fagplanen for praksis for grunnskolelærerutdanning trinn 1-7.

Praksisopplæringen består av 110 dager veiledet, variert og vurdert praksis og er lagt til grunnskolens barnetrinn. Tidlig i studiet kommer fem dager observasjon av lærerens arbeid i og utenfor klasserommet, samt to dager observasjon i 1./2. klasse, hvor temaet overgangen barnehage - skole vektlegges.

Det skal være et integrert forhold mellom studentenes studiefag og praksisstudiet. Studentene skal få erfaringer med studiefagene i praksis og under og etter praksis reflektere over sammenhenger mellom praksiserfaringer og teoristudier i studiefagene. Dette forutsetter et nært og tett samarbeid mellom studenter, faglærere, praksislærer og praksisskolens ledelse. For å få til et slikt samarbeid vil det bli gjennomført felles møter i forbindelse med forberedelser til og oppsummering av praksis.

Praksisopplæringen er fordelt med 80 dager på syklus 1 og 30 dager på syklus 2. I syklus 1 er det lagt vekt på studentenes utvikling av ferdigheter, sosialisering til lærerprofesjonen samt undervisningskunnskap i studiefagene. I syklus 2 er det lagt vekt på å gi studentene mer inngående kunnskap om læringsprosesser, barn og unges utvikling og forsknings- og utviklingsarbeid i skolen, samt at det legges til rette for utvikling av studentens endringskompetanse.

Praksis er en arena hvor det skal tilrettelegges for læring gjennom øvingssituasjoner og veiledning. Første studieår skal studenten i samarbeid med medstudenter planlegge, gjennomføre og vurdere undervisning med veiledning fra praksislærer og faglærer. Videre i studiet vil studenten få et mer selvstendig ansvar for å planlegge, gjennomføre og vurdere undervisning. Innholdet i praksis er beskrevet i en egen fagplan for praksis i tillegg til at det er utarbeidet vurderingsrapport for hvert studieår. Vurdering av studenter i praksisstudiet er et felles ansvarsområde for faglærerne i lærerutdanningen, praksislærer og skoleleder. Det er praksislærer som setter karakteren bestått/ikke bestått. Praksisutvalget annullerer eller stadfester karakteren ikke bestått. Praksis er også omtalt i fagplanene til hvert enkelt fag.

Profesjonstemaene konkretiserer progresjonen i opplæringen og knyttes opp mot de studiefagene studenten tar de ulike årene. Oversikten under viser omfang og innhold i praksisopplæringen i de ulike studieårene.

Omfang og innhold i praksisopplæringen

Syklus 1

Profesjonstemaer:

Lærerrollen, lærerarbeidet, elevmangfoldet, skolen som organisasjon og lærerens tilrettelegging for læring av fag.

Dette omhandler:

Utvikling av egen læreridentitet og relasjonskompetanse

Lærerarbeidet i møte med det flerkulturelle klasserom

Klasseledelse

Planlegging, gjennomføring og vurdering av undervisning

Tilpasset opplæring og læringsfremmende vurdering

Skole-hjem-samarbeidet

Skolen som organisasjon og samarbeid med andre instanser

Antall dager:

1. år – på mellomtrinnet

  • Høst: 5 dager observasjonspraksis
  • Vår: 20 dager praksis

Mellomtrinnet

2. år – på småskoletrinnet, 2 dager observasjon

  • Høst: 15 dager praksis skole
  • Vår: 15 dager praksis

3. år – på 1.-7. trinn

  • Høst: 15 dager praksis
  • Vår: 15 dager praksis

Syklus 2

Profesjonstemaer:

Videreutvikle sin lærerkompetanse. Gi en mer inngående kunnskap om læreprosesser, lærerens tilrettelegging for læring av fag og forsknings- og utviklingsarbeid.

Dette omhandler:

Læringsledelse og dypere forståelse av elevmangfold

Forsknings- og utviklingsarbeid relatert til skolen

Utvikling av endringskompetanse

Antall dager:

4. år – på 1.-7. trinn

Høst: 10 dager praksis og

Vår: 20 dager praksis, hvorav 10 dager er klasse/trinnovertakelse

Admission requirements

Det flerkulturelle og internasjonale perspektivet er forankret i alle fag og alt lærerarbeid i lærerutdanningen. Utdanningen forbereder studenten på det internasjonale og flerkulturelle læringsmiljøet som venter i praksisperiodene og i framtidig yrke som lærer blant annet gjennom bruk av relevant og komparativ internasjonal forskning, faglitteratur og nettressurser.

I utdanningen legges det til rette for at deler av utdanningen kan tas i utlandet gjennom de internasjonale avtaler lærerutdanningen har etablert. Dette gjelder både fagstudium og praksisopphold. 6. semester er spesielt tilrettelagt for utvekslinger, men er også mulig andre semestre avhengig av eget fagvalg. Det 6. semesteret, det internasjonale semesteret, er ikke bare lagt opp med tanke på utveksling, men også med internasjonalt perspektiv for studenter som studerer hjemme. Det fagovergripende temaet dette semesteret er internasjonal utdanning. Læringsarbeidet på campus benytter seg av den ressursen internasjonale studenter og de utenlandske forelesere våre lærere samhandler med, innehar. Det vil også trekkes veksler på kompetansen til internasjonale organisasjoner som Redd Barna og Røde Kors. Pensum i alle fag inneholder oppdatert litteratur på engelsk. Det er i løpet av studiet mulig å velge engelskspråklige emner der interne studenter møter internasjonale studenter. Den internasjonale dimensjonen blir tillagt økt vekt gjennom utdanningsløpet. I fagplanene er det beskrevet hvordan de ulike studiefagene arbeider med internasjonalisering.

Learning outcomes

After the completion of the master’s degree program in Mechanical Engineering, candidates are expected to have achieved the learning outcomes listed below. These are defined in terms of knowledge, skills, and general competence, in accordance with the Norwegian Qualifications Framework (NQF):

Knowledge:

The candidate

  • can identify the main scholarly theories, models and methods in solid mechanics, fluid mechanics and mechatronics  
  • can determine suitable procedures to solve problems in Mechanical engineering, including analytical, computational and/or empirical methods 
  • can explain the main notions on environmental impact, energy efficiency, and product life cycle, with respect to design and product 
  • can explain how sustainability can be optimized using mathematical analysis and simulation methods 
  • can identify relevant information from technical and/or scientific literature  
  • can define the scientific method and the main ethical norms with regards to intellectual property that apply to the reporting of scientific work.

Skills:

The candidate

  • can analyze and apply existing theories and methods to solve practical and theoretical problems in mechanical engineering, both independently and in teams 
  • can translate and combine abstract theoretical models from fluid mechanics, solid mechanics, and mechatronics to solve complex problems the field 
  • can design and implement technical solutions to problems that represent real-life scenarios 
  • can apply software and technical tools that, in complexity and scale, are representative of industry scenarios  
  • can conduct independent research and development projects under supervision, in accordance with the scientific method and the applicable norms of research ethical standards
  • can apply mathematical methods and simulations to optimize environmental impact, energy efficiency and product life cycle 
  • can analyze scientific and technical literature to identify the state-of-the-art and get updated in the field as technology progresses into new areas within society, and to formulate scholarly arguments   
  • can document independent research in the form of a report or scientific article, following the ethical protocols of research, including suitable citation styles
  • can identify and communicate common aspects and challenges in their field to peers from Mechanical engineering field

General competence:

The candidate

  • can analyze relevant academic, professional, and ethical problems in Mechanical Engineering, and use knowledge to give comprehensive recommendations
  • can combine knowledge and skills to conduct advanced assignments and projects   
  • can communicate independently about issues, analyses, and conclusions, both orally and in written form, using professional terminology, with a relevant audience 
  • can contribute to new thinking and innovation processes and reflect about the role and responsibility as an engineer in working towards sustainable development 
  • can use relevant technological knowledge and scientific methods and principles when planning and conducting research

Content and structure

The MSc program is a full-time program, with a duration of two years, which consists of a 90 ECTS lecture-based component, in addition to the master's thesis, a 30 ECTS independent research project.

Content

The program is designed so that, firstly, students acquire competence in core mechanical engineering subjects and develop their analytical and numerical skills through the mandatory courses. Subsequently, through the elective courses and the master’s thesis, students obtain expertise in one or more of the three subdisciplines:

  • Mechatronics
  • Solid mechanics
  • Fluid mechanics

Mechatronics is the discipline at the crossroad where mechanical, electronic, and electrical engineering meet. It also touches on related fields like robotics, computer science, and control engineering. The courses in mechatronics give a wide breadth of knowledge on the basics of the field, and additionally go into details on selected advanced topics.

Students gain practical experience working with a wide range of sensors and sensing techniques based on different physical properties. They also learn about diverse types of actuators, as well as power transmission systems and different control algorithms.

Modelling, simulation, and control of robotic and mechatronic systems are also covered extensively. The focus is placed on real life problems and hands-on experience, with state-of-the-art techniques, and provides students with tools to analyze and solve a wide range of problems in industry and academia.

Solid Mechanics provides a deep understanding of specific subjects within solid mechanics. Finite element methods are among the most versatile numerical methods used in analysis and design of machinery and structures subjected to static, dynamic, and thermal loads or to electromagnetic fields. Several pieces of software are developed based on the implementation of different formulations of the method. Both in-house coding and commercial program awareness render possible for students to gain the knowledge and skills required for successful pre-processing and simulation of models and to interpret the results in postprocessing. The subject of structural integrity and impact is very wide and encompasses several related industries. The methods used for the evaluation of systems subjected to cyclic or impact loads are usually hybrid and include experimental and semi-empirical as well as analytical and numerical methods.

Computational solid mechanics goes beyond the finite element methods and includes weighted residuals, boundary element, and meshless methods besides numerical implementation of nonlocal continuum theories e.g., peridynamics. The knowledge of these methods and their weak and strong points allows for the correct choice of the method of analysis a priori and saves time and effort which would otherwise be squandered pondering why finite element is not the most efficient tool. Structural integrity encompasses several advanced topics such as fracture and damage mechanics, fatigue, and accidental extreme loads. One of the important topics which allows for inclusion of several advanced subjects is impact. Impact mechanics deals with blast and ballistic loading as well as lower rate scenarios. Such phenomena are strongly associated with plasticity, damage, and fracture. A study of the topic therefore gives students a better understanding of these associated fields and prepares them for a wider view of the field. The program also provides knowledge of materials technology and the relevant properties of materials that enable advanced applications.

Fluid mechanics covers the physics of fluids (liquids, gases, and plasma) and how forces act on them. The master’s program will give insight into advanced computational fluid dynamics (CFD), fluid-structure interaction (FSI), and sustainable energy.

Advanced CFD deals with computational simulation of fluid motion in a discretized fluid medium and solving the Navier-Stokes equation for incompressible and compressible flows with specific attention paid to turbulence and dissipation of energy. Students will learn to understand both the benefits and limitations of using industrial CFD tools to solve engineering problems.

Fluid-structure interaction is a multiphysics problem which deals with a domain comprising at least two subdomains of fluid and solid materials. By the time the student takes up the course they have the knowledge of solids and fluids and how to solve problems in each subdomain separately. The most important aspect of FSI is thus to enable methods to link the subdomains across the interface on response parameters. The method finds its applications in ship and marine structures, wind turbines, as well as offshore oil and gas industries. The course in sustainable design and manufacturing of energy systems provides relevant concepts for the reduction of materials and energy use, life cycle assessment, and circular economy related to energy systems.

The structure of the program

The master's degree program consists of seven mandatory courses, elective courses, and a master's thesis / dissertation. Advanced Engineering Mathematics is a general course. The remaining mandatory courses are either covering solid mechanics, fluid mechanics and/or mechatronics.

Solid mechanics:- Continuum Mechanics and Thermodynamics- ​Advanced Materials​- Finite Element Method Fluid mechanics:- Computational Fluid Dynamics

Mechatronics:

- Introduction to Mechatronics

- Practical Mechatronics

The available elective courses are:

- Structural Integrity and Impact (Solid mechanics)

- Fluid structure interaction (Fluid mechanics)

- Sustainable design and manufacturing of energy systems (Fluid mechanics)

- ACIT4740 Rehabilitation and Assistive Devices (Mechatronics) (the course is from ACIT master’s program)

- ACIT4820 Applied Robotics and Autonomous Systems (Mechatronics) (the course is from ACIT master’s program)

In the fourth semester, students will work independently on their master’s thesis.

Optional course Spans multiple semesters

1st year of study

2. semester

2nd year of study

3. semester

4. semester

Elective courses

Teaching and learning methods

Studenten møter ulike vurderingsformer i løpet av studiet. Dette har to hensikter, både å kunne vurdere alle sider ved studentenes lærerkvalifisering, samt å gi studentene erfaring med ulike vurderingsmetoder som er relevante for deres seinere arbeid i skolen med elevenes læring og vurdering. Nærmere informasjon finnes i den enkelt fag- og emneplan.

Internationalisation

Godkjent av studieutvalget 16. november 2016.

Redaksjonell endring foretatt 3. juli 2017, 15. mai og 5. juni 2018 og 7. mars og 25. juni 2019.

Revisjon godkjent av utdanningsutvalget 25. januar 2021.

Redaksjonell endring lagt inn 11. mai 2021.

Gjeldende fra høstsemesteret 2021.

Redaksjonell endring lagt inn høst 2025

Work requirements

A coursework requirement is a compulsory piece of work/activity that must be approved before the student may take an examination. Coursework requirements are assessed as either "approved" or "not approved".

The coursework requirements in this master’s program include projects, written reports, oral presentations, mandatory exercises, and laboratory exercises. These mandatory assignments can be individual or in groups. The coursework requirements for each individual course are listed in the course description for that specific course.

Assessment

The forms of assessment are designed to best fit the learning outcomes of the program and to verify that the students have acquired them. Assessment methods vary between different courses, and include written reports, portfolio assessment, oral examinations (oral presentations and oral defenses), and written exams.

The forms of assessment and grade scale are described in detail in the individual course descriptions. Two alternative grading scales can be used: A-F scale, with A to E for pass (A being the highest grade) and F for fail; or pass/fail grading scale.

The master's thesis is assessed by an evaluation team conformed by two examiners, one external and one internal. In addition to submitting a written report, students must also give an oral presentation of the thesis. The examiners set the grade for the master's thesis after the oral presentation and questioning. The thesis supervisor is not involved in the assessment of the thesis’ grade. This form of assessment is applied in several other courses as well. This is to ensure that students are comfortable with the assessment form in advance of the thesis project.

The students' rights and obligations are set out in Regulations relating to studies and examinations at OsloMet, https://student.oslomet.no/en/acts-regulation. These regulations describe the conditions for resetting/rescheduling exams, the right to appeal (written examinations can be appealed, oral exams cannot be appealed), the definitions of cheating in exams, etc. Students are responsible for their registration in resist or rescheduled exams.

Students are responsible for familiarizing themselves with these rules and regulations.

Guildeline for master's theses at the Faculty can be found here: Retningslinjer for masteroppgaver ved Fakultet for teknologi, kunst og design - Student - minside (oslomet.no)

Other information

Quality assurance

The purpose of OsloMet's quality assurance system is to strengthen students' learning outcomes and development by raising the quality at all levels. Cooperation with the students, and their participation in the quality assurance work, is decisive to the overall learning outcome. Among the overall goals for the quality assurance system is to ensure:

  • that the educational activities, including practical training and the learning and study environment, maintain a high level of quality
  • that the study programmes are relevant for the professional fields
  • that the quality development continues to improve

For the students, this entails, among other things, student evaluations in the form of:

  • course evaluations
  • annual student surveys for all of OsloMet

More information about the quality assurance system is available here: https://student.oslomet.no/regelverk#etablering-studium-evaluering-kvalitetssystem

Programme supervisor scheme

The programme supervisor scheme is part of the quality assurance of each individual study programme. A programme supervisor is not an examiner, but someone who supervises the quality of the study programmes. All study programmes at OsloMet shall be subject to supervision by a programme supervisor, but there are different ways of practising the scheme. Reference is made to the Guidelines for Appointment and Use of Examiners at OsloMet: https://student.oslomet.no/retningslinjer-sensorer