Programplaner og emneplaner - Student
Master´s Programme in Health and Technology - Specialisation in Radiography Programme description
- Programme name, Norwegian
- Masterstudium i helse og teknologi – spesialisering i radiografi
- Valid from
- 2025 FALL
- ECTS credits
- 120 ECTS credits
- Duration
- 6 semesters
- Schedule
- Here you can find an example schedule for first year students.
- Programme history
-
Introduction
The Master’s Programme in Health and Technology with specialisations is a master’s degree with a scope of 120 credits in accordance with Section 3 of the Regulations concerning Requirements for the Master’s Degrees, adopted by the Ministry of Education and Research. The programme was established under the Act relating to Universities and University Colleges and the Regulations relating to Studies and Examinations at OsloMet – Oslo Metropolitan University.
The programme includes specialisations in assistive technology in health, biomedicine and radiography. The students will acquire in-depth knowledge in the chosen specialisation and will gain detailed knowledge of technology relating to the discipline covered by the specialisation. Through common courses across the specialisations, an overview is provided of technology developments in the field of health in general, of relevance to both the specialist and municipal health services, as well as for research. Students learn about innovation and entrepreneurship to create new solutions through interdisciplinary collaboration between public and private actors, and about how the implementation and use of technology affects the health sector, individuals, and society. The students will also become familiar with legislation that regulates health research, the collection and use of personal data and health data, and the use of human biological specimen. The programme will also address ethical challenges relating to the development and implementation of technology in the health context, and the importance of user participation will be highlighted and discussed.
A greater need for health and care services in the years ahead means that interdisciplinary cooperation and efficient use of technology will be important to maintain sustainable health services. The programme will contribute to a greater understanding of technology and enhanced technological skills in the field. The students will learn to communicate about their own discipline in a way others can understand, which is important to be able to contribute to interdisciplinary projects. Compulsory common courses and elective courses across specialisations foster interdisciplinary collaboration between the disciplines covered by the programme.
Specialisations
Applicants must choose and apply directly for the specialisation they wish to take when applying for the master’s programme. Different admission requirements apply to the specialisations; see more information under Admission requirements. Parts of the programme will include joint teaching, partly through compulsory common courses and partly through options across the specialisations. Some courses will be held jointly with other master’s degree programmes at OsloMet.
Students who pass the programme will be awarded the degree Master in Health and Technology, with one of the following specialisations:
- Assistive Technology in Health
- Biomedicine
- Radiography
The name of the specialisation will be stated on the diploma alongside the name of the degree.
MAATH: Assistive Technology in Health
The specialisation emphasises assistive technology in health (ATH) (referred to as welfare technology in the Nordic countries) in an interdisciplinary, practice-oriented, and person-centred context, at both individual and system levels within specialist health services and municipal health and social services. ATH is aimed at promoting health and preventing illness through treatment and (re)habilitation to improve cost-effective and sustainable health and social services. Students learn how ATH can assist individuals in activity, participation, safety, dignity, and coping in everyday life. Examples of ATH include technical and orthopaedic aids, exoskeleton technology, smart home technology, robot assistants, GPS, technologies for activity and movement analysis, computer-controlled (bionic) prostheses and orthoses, and artificial intelligence. The specialisation emphasises knowledge and skills in developing, piloting, implementing, and evaluating complex interventions with ATH in collaboration between private and public actors. Students learn to analyse the interaction between humans, health, activity, participation, movement, and technology.
MABIO: Biomedicine
The biomedical field integrates natural sciences, technology, and health sciences, forming the foundation for medical diagnostics and treatment with a global health perspective. The specialisation in biomedicine is aimed at students seeking advanced knowledge and expertise in biomedical sciences. Students will explore the biological mechanisms underlying human health and disease, gaining a profound understanding of cellular and molecular processes. They will learn about relevant bioanalytical methods, laboratory diagnostic technology, statistics, and quality assurance of analytical methods through both theoretical instruction and practical laboratory work. The programme emphasises the development of critical thinking, ethical reflection, scientific communication, and interdisciplinary collaboration skills.
MARAD: Radiography
The specialisation emphasises the use of various technologies in medical radiation and the importance of these technologies in the health service to ensure synergies between technology and health. Students will choose one of two directions within radiography: conventional radiography or CT. The specialisation is practice-oriented and profession-oriented and is designed to meet increasing demands for expertise in diagnostics and treatment in connection with medical use of radiation. Students will gain in-depth expertise in optimisation and imaging, focusing on personalised examinations and forms of treatment.
Relevance to working life
Technological expertise is in demand in the health sector, and a Master’s Degree in Health and Technology can lead to many career opportunities in the public and private sectors alike. Possible fields of work and career paths in health and technology after completing the programme include:
- research, development of the field, and teaching
- advisory functions in the public administration, knowledge dissemination and counselling
- clinical or diagnostic work based on specialised expertise
- managerial positions in disciplines relating to health and technology
- innovation and implementation processes
- product and service development
Relevance to further education
Candidates with a Master’s Degree in Health and Technology are qualified to apply for admission to PhD programmes, including the PhD Programme in Health Sciences at OsloMet.
Students may apply for admission to the research programme at the Faculty of Health Sciences while taking the master’s programme. This is taken in parallel to and as an extension of the master’s programme. The research programme gives students advanced researcher expertise in addition to that provided during the ordinary master’s programme. Results from this research work may later, on application, form part of PhD-level work.
Sustainability
The 2030 Agenda is the UN’s plan of action for global sustainable development, specified as 17 Sustainable Development Goals (SDGs). Through global partnerships, the world must work together to end poverty and hunger, ensure good health and education for all and reduce climate change and inequality. Some of the goals can be achieved through the development and implementation of different technologies. The Master’s Programme in Health and Technology is particularly aimed at promoting good health and well-being (SDG3), quality education (SDG4), industry, innovation and infrastructure (SDG9), reduced inequality (SDG10) and partnership for the goals (SDG17).
The 17 SDGs must be seen as a whole, where each goal is seen in conjunction with the others. The purpose of the programme is to educate candidates who are active global citizens with knowledge of how technology contributes to sustainable health services, good health and an inclusive society for all, regardless of age, gender, ethnicity, education, sexuality and functional ability.
Target group
The programme is suitable for individuals who wish to actively contribute to development work, research, and innovation processes within their own field and in interdisciplinary collaboration involving technology and digital solutions.
The specialisation in assistive technology in health is relevant for individuals in the private or public sector who are interested in working interdisciplinary to develop and implement technology in the field of treatment, (re)habilitation, and health promotion.
The specialisation in biomedicine is relevant for individuals with a background in laboratory sciences who wish to deepen their expertise in biomedical analytical methods and biomedical research as a foundation for medical diagnostics and treatment.
The specialisation in radiography is relevant for individuals who wish to deepen their expertise in diagnostics and treatment, as well as the development and implementation of new diagnostic and therapeutic procedures within radiation-based technologies in healthcare.
Admission requirements
Programplanen bygger på forskrift om rammeplan for grunnskolelærerutdanningene for 1.–7. trinn og 5.–10. trinn, fastsatt av Kunnskapsdepartementet 7. juni 2016, og nasjonale retningslinjer for grunnskolelærerutdanningen 5.–10. trinn.
Studietilbudet består av to emner à 15 studiepoeng. Emne 2 bygger på emne 1. Studietilbudet tilbys som del av videreutdanningsstrategien Kompetanse for kvalitet – strategi for videreutdanning av lærere. Undervisningen i studiet går over to semestre.
Matematikk er en bærebjelke i vår tids teknologiske utvikling og matematisk kunnskap er et viktig element i mange fagområder og virksomheter. Formålet med matematikkfaget i lærerutdanningen er at studentene skal ha en solid oversikt og trygghet i skolefaget matematikk og at de skal bli i stand til å undervise etter gjeldende læreplan for grunnskolen på en faglig trygg og reflektert måte. Kjerneelementene i læreplan i matematikk fellesfag for trinn 1–10 i 2020, vil være grunnlaget når studentene skal utvikle sine kunnskaper og arbeidsmåter. De skal kunne forstå, vurdere og beskrive elevenes læringsprosesser og kunnskapsutvikling i matematikk. Overganger mellom hovedtrinnene blir vektlagt under undervisningen.
Opplæringen skal belyse ulike aspekt ved det å kunne matematikkfaget. Her vil kjerneelementene være styrende.
Utforsking handler om å finne mønster og sammenhenger og kunne diskutere seg fram til en felles forståelse. Problemløsing er å utvikle en metode for å løse et problem som ikke er kjent fra før.
Å modellere er en beskrivelse av virkeligheten ved hjelp av et matematisk språk og kritisk vurdere om modellen er gyldig som anvendelse. Resonnering og argumentasjon er å kunne forstå og vurdere matematiske tankerekker og videre utforme egne resonnement både for å forstå og løse et problem.
Å abstrahere og generalisere handler om å kunne se sammenhenger og strukturer, utvikle symbolspråk og formalisere ved å bruke algebra.
Det er også viktig at studentene kan reflektere omkring samspillet mellom matematikkfaglige kunnskaper og didaktiske problemstillinger.
Learning outcomes
Studietilbudet er beregnet for personer som ønsker å kvalifisere seg som matematikklærere på mellom- og ungdomstrinnet.
Teaching and learning methods
Varied and student-active forms of teaching are used in the programme. Good learning outcomes are first and foremost dependent on the students’ own efforts. The number of hours allocated to structured teaching by the university will be relatively low. Own effort means both benefiting from teaching and academic supervision and following this up with independent work in the form of theoretical studies and, if relevant, practical skills training. Normal study progression demands a high level of self-activity. The most important work and teaching methods used in the courses in the programme are described below. The individual course descriptions state which work methods each course employs.
Web-based work and teaching methodsSeveral forms of digital learning resources are used in the programme, such as digital platforms, digital lectures, video clips, podcasts, tests and assignments. These resources can be used to prepare for teaching sessions, during seminars using the flipped classroom method, and as part of self-study. This form of teaching requires the students to come prepared for scheduled teaching sessions. Interaction may also take place digitally in the form of virtual meetings, webinars, workshops etc.
Self-study and student cooperation/group workLearning requires a high degree of own activity and self-study, including both individual work and cooperation with fellow students. Through activities such as exchange of ideas, presentations, discussions, written assignments and problem-based assignments, students will be encouraged to learn by conveying knowledge and experience, expressing their own opinions and, together, reflecting on their own attitudes, actions and understanding of the field. Students are encouraged to take the initiative to schedule and actively participate in study groups to promote learning.
Skills training/laboratory workDifferent forms of skills training or laboratory work may be included in the programme. Students will work on issues of relevance to the topic concerned, either individually or in groups, and will perform experiments, simulations or solve practical tasks that will demonstrate their theoretical understanding of different methods and techniques used in the field. They will also acquire the skills required to carry out the assignments in an independent manner.
Skills training may also include the use of digital tools to solve assignments or improve communication skills.
LecturesLectures are primarily used to introduce new subject matter, provide an overview of and highlight main elements and links within different topics, and also to convey relevant research-based issues and literature.
SeminarsSeminars emphasise dialogue and discussion between the lecturer(s) and students in order to stimulate students’ academic development. Oral student presentations and discussions are emphasised.
In connection with the master’s thesis, seminars are held where the theses are presented and discussed. The students receive feedback from their fellow students and teachers, which enables peer learning. Research-related issues, methods and academic supervision are among the topics discussed in the seminars. Seminars may also take place on digital collaboration platforms.
Projects, assignments and supervisionThrough project work, case studies, written assignments and the master’s thesis, students will formulate research questions for assignments that they work on over time, either individually or in cooperation with other students. They will learn theory and develop skills in using and referencing sources, analysis, discussion and written and oral communication. The primary purpose of this is to develop their ability to reflect critically, see elements in context and develop a deeper understanding of a subject.
Developing academic writing skills is a key aspect of all parts of the programme.
Supervision is an important component of the work on the master’s thesis. The supervision is intended to ensure that the project complies with principles of research ethics and help students to formulate research questions and ensure quality in the collection and analysis of data.
Internationalisation
Matematikk 1, trinn 5–10 – oppdrag er bygd opp av to emner à 15 studiepoeng. I disse delene gjengis sentrale innholdskomponenter. Gjennom faglig og fagdidaktisk arbeid med dette innholdet søker vi å nå målene nedenfor.
Emne 1
Tall og algebra
- Tall, tallsymboler, regning med tall, ulike tallsystemer i vår og andres kultur
- Barns utvikling av tallforståelse, teorier om kognitiv utvikling og læring
- Ulike tallbegreper, inkludert naturlige tall, hele tall, rasjonale tall og reelle tall, additiv og multiplikativ gruppering, posisjons- og grunntallsprinsippet, hoderegning og overslagsregning
- Ulike algoritmer og strategier knyttet til tallregning
- Arbeid med brøk, desimaltall og prosent
- Arbeid med overgangen fra tallregning til algebra, herunder generalisering og algebraisk tenkning
- Grunnleggende algebraiske lover for tall, behandling av algebraiske uttrykk, bl.a. i tilknytning til tallfølger, figurtall og enkle ligninger
- Likninger som løsningsmetode i praktisk regning
Emne 2
Tall og algebra
- Barns utvikling av tallforståelse, teorier om kognitiv utvikling og læring
- Ulike tallbegreper, inkludert naturlige tall, hele tall, rasjonale tall og reelle tall, additiv og multiplikativ gruppering, posisjons- og grunntallsprinsippet, hoderegning og overslagsregning
- Arbeid med likninger, herunder annengradslikninger og lineære likningssystemer
- Likninger som løsningsmetode i praktisk regning
- Ulike representasjoner av funksjoner og variabelbegrepet
Geometri, statistikk og sannsynlighet
- Geometriske begreper og grunnleggende geometriske figurer i plan og rom
- Arbeid med grunnleggende geometriske setninger, herunder Pytagoras’ setning
- Geometriske konstruksjoner som er aktuelle i grunnskolen og prinsippene bak disse, de klassiske geometriske stedene og deres egenskaper
- Formlikhet og kongruens, sammenhengen med modeller, kart, arbeidstegninger, mønstre og symmetri
- Statistiske undersøkelser og grafiske framstillinger av datamaterialer
- Sannsynlighetsbegrepet, sannsynlighetsregning og kombinatorikk
Work requirements
Studentene vil møte varierte arbeidsformer. Studentene forventes å ta ansvar for egen læring gjennom framlegg, kollokvier og ved fortløpende vurdering av egen læringsprosess.
Teoretisk arbeid i faget knyttes nært til praktisk tilrettelegging av undervisning i faget. Arbeid med og vurderinger av fagdidaktiske spørsmål inngår som en viktig del av kurset. Studentenes arbeid med, og erfaringer fra, praksis i matematikkundervisning skal eksplisitt trekkes inn som en del av undervisningen.
Studentene skal i løpet av semesteret levere inn ulike arbeid knyttet til undervisning i faget. Disse kan være av matematikkfaglig og/eller fagdidaktisk karakter. Faglærer og/eller medstudenter gir tilbakemelding på og/eller veiledning av de enkelte arbeidene.
I alle temaene vil det være aktuelt å benytte IKT som praktisk hjelpemiddel.
Assessment
Arbeidskrav skal være levert/utført innen fastsatt(e) frist(er). Gyldig fravær dokumentert med for eksempel sykemelding, gir ikke fritak for å innfri arbeidskrav. Studenter som på grunn av sykdom eller annen dokumentert gyldig årsak ikke leverer/utfører arbeidskrav innen fristen, kan få forlenget frist. Ny frist for å innfri arbeidskrav avtales i hvert enkelt tilfelle med den aktuelle læreren.
Arbeidskrav vurderes til ”Godkjent” eller ”Ikke godkjent”. Studenter som leverer/utfører arbeidskrav innen fristen, men som får vurderingen ”Ikke godkjent”, har anledning til maksimum to nye innleveringer/utførelser. Studenter må da selv avtale ny innlevering av det aktuelle arbeidskravet med faglærer.
Other information
Retten til å avlegge eksamen forutsetter godkjente arbeidskrav.
Avsluttende vurdering - emne 1: Individuell, skriftlig eksamen under tilsyn (seks timer).
Avsluttende vurdering - emne 2: Individuell, muntlig eksamen (omfang om lag 30 minutter).
Karakterskala
Ved gradert karakter gis det bokstavkarakterer med A som beste og E som dårligste karakter på bestått eksamen. Karakteren F brukes ved ikke bestått eksamen.
Vurderingskriterier
A: Fremragende prestasjon som klart utmerker seg. Klar, konsis fremstilling. Ingen betydelige faglige feil. Stor kreativitet og refleksjon.
B: Meget god prestasjon som ligger over gjennomsnittet. Viser evne til selvstendighet. En del kreativitet og refleksjon. Meget god framstilling. Ingen store faglige feil. Viser gjennomgående meget god forståelse.
C: Gjennomsnittlig prestasjon som er tilfredsstillende på de fleste områder. Fremstillingen kan ha svakheter, men ikke store. Viser god forståelse og refleksjon.
D: Prestasjon under gjennomsnittet. Har vist en del kunnskaper. Viser faglige svakheter ved fremstillingen og resultatene. Viser noe forståelse og refleksjon.
E: Prestasjon som tilfredsstiller minimumskravene. Viser noe kunnskap både matematisk og didaktisk. Viser liten selvstendig bruk av kunnskap og liten evne til forståelse og refleksjon.
F: (Ikke godkjent): Prestasjon som ikke tilfredsstiller minimumskravene.