Programplaner og emneplaner - Student
Bachelor's Degree Programme in Mathematical Modelling and Data Science Programme description
- Programme name, Norwegian
- Bachelorstudium i ingeniørfag – matematisk modellering og datavitenskap
- Valid from
- 2023 FALL
- ECTS credits
- 180 ECTS credits
- Duration
- 6 semesters
- Schedule
- Here you can find an example schedule for first year students.
- Programme history
-
-
Introduction
Planen er utarbeidet ved OsloMet - storbyuniversitetet etter forskrift om rammeplan for ingeniørutdanningen, fastsatt av Kunnskapsdepartementet 18. mai 2018.
Nasjonalt kvalifikasjonsrammeverk for høyere utdanning, fastsatt av Kunnskapsdepartementet 20. mars 2009, gir oversikt over det totale læringsutbytte definert i kunnskap, ferdigheter og generell kompetanse som kandidaten forventes å ha etter fullført utdanning. Læringsutbyttebeskrivelsene i planen er utarbeidet i henhold til rammeplan og kvalifikasjonsrammeverket.
Studiet er en treåring rammeplanstyrt ingeniørutdanning. Kandidater som har fullført i henhold til programplanen tildeles graden Bachelor i ingeniørfag – matematisk modellering og datavitenskap. Studiets profil er preget av samhandling mellom informatikk, matematikk, statistikk og fysikk. Utdanningen skal gi studentene kompetanse til å arbeide med ingeniørfaglige problemstillinger knyttet til realfaglige anvendelsesområder. Gjennom tre år med ingeniør-rettede emner vil studenten tilegne seg kunnskap som er essensiell for naturvitenskapelige problemstillinger i arbeidslivet. Studiet er tilpasset ingeniørfaglige premisser og er forskningsbasert; forskning og utviklingsarbeid danner grunnlag for en kontinuerlig utvikling av studiets innhold og struktur, som involverer både stipendiater og studenter.
Bachelorstudiet har tre studiespesialiseringer:
- vitenskapelige beregninger (engelsk: Scientific computing),
- statistiske og datadrevne metoder (engelsk: Statistics and data science), og
- matematikk og fysikk (engelsk: Mathematics and physics).
Studentene følger samme emner første studieår, og så fordyper de seg i økende grad i andre og tredje studieår. I siste semester gjennomfører studentene en bacheloroppgave knyttet til arbeidslivsrettede problemstillinger.
Videre studier
Det finnes en rekke videreutdanningsmuligheter for kandidater med bachelor i ingeniørfag. En del fortsetter fram til en mastergrad i ved OsloMet, hvor Anvendt data- og informasjonsteknologi (ACIT) er mest relevant. Studiet er spesielt tilrettelagt for spesialiseringene «Anvendt kunstig intelligens», «Datavitenskap», «Matematisk modellering og vitenskapelige beregninger» i ACIT-programmet. Spennende mastertilbud finnes også ved NTNU, UMB, UiO eller andre norske og utenlandske universiteter
-
Target group
Studiets målgruppe er søkere med realfaglig bakgrunn som ønsker høyere utdanning innen et ingeniørfaglig område. Søkere som ikke har realfaglig bakgrunn kan søke på universitetets forkurs for ingeniørfag eller tre-semesterordning for å kvalifisere seg videre til ingeniørutdanning. Se universitetets nettsider: www.oslomet.no
Dette studiet er en interdisiplinær utdanning som kobler sammen matematisk analyse, numerisk og diskret matematikk, fysikk, statistikk, og datadrevne metoder. Studenter som søker seg til studiet bør være motivert for å jobbe disse temaene og hvordan de kobles sammen for å løse komplekse ingeniørfaglige problemstillinger fra arbeidslivet. Dette er et ambisiøst program med stort innslag av matematikk i løpet av studiet, som vil forfine en matematisk tilnærming til problemløsning som kan anvendes både i og utenfor matematiske rammer
-
Admission requirements
Generell studiekompetanse/realkompetanse og i tillegg matematikk R1+R2 og fysikk 1. Forkurs eller teknisk fagskole fra tidligere strukturer oppfyller kvalifikasjonskravene. Søkere med teknisk fagskole etter lov om fagskoler av 2003 må ta matematikk R1+R2 og fysikk 1.
Viser til forskrift om opptak til høyere utdanning: https://lovdata.no/dokument/LTI/forskrift/2007- 01-31-173
-
Learning outcomes
En kandidat med fullført og bestått kvalifikasjon 3-årig skal ha følgende totale læringsutbytte definert i kunnskap, ferdigheter og generell kompetanse:
Kunnskap
Kandidaten:
- har bred kunnskap som gir et helhetlig systemperspektiv på ingeniørfaget generelt, med fordypning i matematisk modellering og datavitenskap. Sentrale kunnskaper inkluderer matematisk problemløsning, forståelse for fysiske prinsipper, samt utvikling og bruk av realfaglig programvare.
- har grunnleggende kunnskaper i matematikk, naturvitenskap, relevante samfunns- og økonomifag og om hvordan disse kan benyttes i ingeniørfaglig problemløsning.
- har kunnskap om teknologiens historie, teknologiutvikling, ingeniørens rolle i samfunnet, relevante lovbestemmelser knyttet til bruk av matematisk modellering og datavitenskap og har kunnskaper om ulike konsekvenser ved bruk av teknologien.
- kjenner til forsknings- og utviklingsarbeid innenfor matematisk modellering og datavitenskap, samt relevante metoder og arbeidsmåter innenfor ingeniørfaget.
- kan oppdatere sin kunnskap innenfor fagfeltet, både gjennom informasjonsinnhenting og kontakt med fagmiljøer og praksis.
Ferdigheter
kandidaten:
- kan anvende kunnskap og relevante resultater fra forsknings- og utviklingsarbeid for å løse teoretiske, tekniske og praktiske problemstillinger innenfor matematisk modellering og datavitenskap, samt begrunne sine valg
- har kunnskap om programvare og programmeringsspråk relevant for matematisk modellering og datavitenskap og har bred ingeniørfaglig digital kompetanse.
- kan bruke relevante programmeringsspråk til å løse naturvitenskapelige problemstillinger.
- kan arbeide i digitale laboratorier og behersker metoder og verktøy som grunnlag for reproduserbar, målrettet og innovativt arbeid.
- kan identifisere, planlegge og gjennomføre ingeniørfaglige prosjekter, arbeidsoppgaver, forsøk og eksperimenter både selvstendig og i team.
- kan finne, vurdere, bruke og henvise til informasjon og fagstoff og framstille dette slik at det belyser en problemstilling.
- kan bidra til nytenkning, innovasjon og entreprenørskap gjennom deltakelse i utvikling og realisering av bærekraftige og samfunnsnyttige produkter, systemer og løsninger.
Generell kompetanse
kandidaten:
- har innsikt i miljømessige, helsemessige, samfunnsmessige og økonomiske konsekvenser av bruk av matematisk modellering og datavitenskap.
- kan sette resultater av matematisk modellering og datavitenskap i et etisk og livsløpsperspektiv.
- kan identifisere sikkerhets-, sårbarhets-, personverns- og datasikkerhetsaspekter i produkter og systemer som anvender IKT.
- Kandidaten kan formidle ingeniørfaglig kunnskap til ulike målgrupper både skriftlig og muntlig og kan bidra til å synliggjøre teknologiens betydning og konsekvenser.
- Kandidaten kan reflektere over egen faglig utøvelse, også i team og i en tverrfaglig sammenheng, og kan tilpasse denne til den aktuelle arbeidssituasjon.
- Kandidaten kan bidra til utvikling av god praksis gjennom å delta i faglige diskusjoner innenfor matematisk modellering og datavitenskap og dele sine kunnskaper og erfaringer med andre.
- har informasjonskompetanse; vet hvorfor man skal søke etter kvalitetssikrede kunnskapskilder, hvorfor man skal henvise til kilder og kjenner til hva som defineres som plagiat og fusk i studentarbeider.
- kan oppdatere sin kunnskap gjennom litteraturstudier, informasjonssøking, kontakt med fagmiljøer og brukergrupper og gjennom erfaring.
-
Content and structure
Studiet er en treåring ingeniørutdanning og gir graden bachelor i matematisk modellering og datavitenskap. Hvert studieår utgjør 60 studiepoeng, det vil si at bachelorstudiet har et samlet omfang på 180 studiepoeng. Hvert emne har en avsluttende eksamen.
I første semester vil det i hovedsak være norsk i pensum og som undervisningsspråk, men det blir i økende grad benyttet engelsk litteratur utover studiet. Femte semester tilbys på engelsk for å tilrettelegge økt inn-/utveksling. Selv om bachelorstudiet i hovedsak undervises på norsk er det derfor en forventning at studentene har tilstrekkelig gode engelskkunnskaper da mye relevant faglitteratur og ressurser er på engelsk.
Innholdet i undervisningen i den felles delen av utdanningen kan oppsummeres som følger:
Første studieår fellesemner: Realfaglig basis
- Ingeniørfaglig basis
- Kalkulus og diskret matematikk
- Programmering
- Fysikk og kjemi
Andre studieår fellesemner: Faglig bredde og dybde
- Lineær algebra og differensialliknigner
- Statistikk
- Moderne fysikk
Tredje studieår: Faglig fordypning
- Flervariabel kalkulus
- Bacheloroppgave
Studiet er bygd opp av følgende emnegrupper jf rammeplanen:
Ingeniørfaglig basis: 30 studiepoeng med grunnleggende matematikk, ingeniørfaglig systemtenkning og innføring i ingeniørfaglig yrkesutøvelse og arbeidsmetoder. Dette skal i hovedsak relateres til ingeniørutdanningen og legge grunnlaget for ingeniørfaget.
Programfaglig basis: 50–70 studiepoeng med tekniske fag, realfag og samfunnsfag. Dette skal i hovedsak relateres til studieprogrammet og legge grunnlaget for fagfeltet.
Teknisk spesialisering: 50–70 studiepoeng som gir en tydelig retning innen eget fagfelt, og som bygger på ingeniørfaglig basis og programfaglig basis. Dette skal i hovedsak relateres til studieretningen og legge grunnlaget for fagområdet. Bacheloroppgaven inngår i teknisk spesialisering.
Valgfri emner: 20–30 studiepoeng som bidrar til videre faglig spesialisering, enten i bredden eller dybden.
Studiet består videre av tre spesialiseringer hvor studentene følger flere forskjellige emner i andre og tredje studieår. Studentene velger spesialisering i løpet av andre semester semester1. Dersom det i ett årskull er få studenter som velger en gitt spesialisering, vil ikke spesialiseringen tilbys for det årskullet. De tre spesialiseringene har følgende fordypningstema i andre og tredje studieår:
Spesialisering i statistiske og datadrevne metoder
Spesialiseringen i statistiske og datadrevne metoder følger alle de obligatoriske felles emnene, men har følgende obligatoriske emner som teknisk spesialisering.
- DATS2300 Algoritmer og datastrukturer
- DAVE3625 Introduksjon til kunstig intelligens
- MAMO3100 Statistisk analyse
- ADSE3200 Visualisering
Følgende emner er spesielt utvalgt som valgfrie fordypningsemner (alle er 10 studiepoeng):
- MAMO3200 Simulering og visualisering
- ADTS2310 Testing av programvare
- DATA3750 Anvendt kunstig intelligens og data science prosjekt
- ITPE3100 Datasikkerhet
- DATA3790 Personvern- og identitetsteknologiprosjekt
- DATA3730 Introduksjon til IT-forskning Vår:
- MAMO2200 Avansert modellering og beregninger
- DATA2410 Datanettverk og skytjenester
Spesialisering i vitenskapelige beregninger
Spesialiseringen i vitenskapelige beregninger følger alle de obligatoriske felles emnene, men har følgende obligatoriske emner som teknisk spesialisering.
- DATS2300 Algoritmer og datastrukturer
- MAMO2200 Avansert modellering og beregninger
- MAMO3200 Simulering og Visualisering
Følgende emner er spesielt utvalgt som valgfrie fordypningsemner (alle er 10 studiepoeng):
- MAMO2300 Lineær algebra og introduksjon til gruppeteori
- MAMO3300 Reell analyse
- ADTS2310 Testing av programvare
- ITPE3100 Datasikkerhet
- DATA3730 Introduksjon til IT-forskning
- MAMO2500 Symmetrier og algebraiske strukturer ** ikke tilbys v26
- ADSE3200 Visualisering
- DATA2410 Datanettverk og skytjenester
Spesialisering i matematikk og fysikk
Spesialiseringen i matematikk og fysikk følger alle de obligatoriske felles emnene, men har følgende obligatoriske emner som teknisk spesialisering.
- MAMO2300 Linear algebra og introduksjon til gruppeteori
- MAMO2500 Symmetrier og algebraiske strukturer
- MAMO2400 Termodynamiskk og statistikk fysikk
- MAMO3300 Reell analyse
Følgende emner er spesielt utvalgt som valgfrie fordypningsemner (alle er 10 studiepoeng):
- MAMO3200 Simulering og visualisering
- ADTS2310 Testing av programvare
- ITPE3100 Datasikkerhet
- DATA3730 Introduksjon til IT-forskning
- MAMO2200 Avansert modellering og beregninger
- DATA2410 Datanettverk og skytjenester
Optional course Spans multiple semesters1st year of study
1. semester
2. semester
2nd year of study
3. semester
4. semester
Emnegruppe: Statistiske og datadrevne metoder
3. semester
Emnegruppe: Vitenskapelige beregninger
3. semester
3rd year of study
5. semester
6. semester
Emnegruppe: Matematikk og fysikk
5. semester
6. semester
Emnegruppe: Statistiske og datadrevne metoder
5. semester
Emnegruppe: Vitenskapelige beregninger
5. semester
-
Teaching and learning methods
Mastergraden oppnås i samsvar med departementets forskrift om krav til mastergrad, § 3.
Studiet har 25 studieplasser. Det er opptak én gang i året med studiestart hver høst.
Opptak skjer i henhold til forskrift om opptak til studier ved Høgskolen i Oslo og Akershus.
Grunnlaget for opptak er en bachelorgrad, en cand.mag.-grad eller tilsvarende med en faglig fordypning i journalistikk, fotojournalistikk eller mediefag på minimum 80 studiepoeng.
For opptak til masterstudier må søker ha karaktersnitt C eller bedre i det faglige grunnlaget for opptak.
For søkere med bokstavkarakter er det faglige minstekravet opptak 5,0, jf. §10.
For søkere med tallkarakterer er det faglige minstekravet for opptak 2,7 .
Søkegruppe 1
25 prosent av plassene ved opptak forbeholdes søkere som kun konkurrerer på grunnlag av karakterpoeng. Søkere som ikke når opp i søkegruppe 1 konkurrerer videre i søkegruppe 2.
Søkegruppe 2
forbeholdes søkere som tildeles tilleggspoeng for dokumentert relevant utdanning og/eller praksis ut over minstekravet. Med relevant utdanning menes fag innen humaniora, samfunnsvitenskap eller realfag.
Med relevant praksis menes heltidsarbeid som journalist i trykte medier, radio, fjernsyn eller nettredaksjon i minimum seks måneder sammenhengende etter endt utdanning. Tilleggspoeng gis slik det fremgår av § 13 i forskrift om opptak til studier ved Høgskolen i Oslo og Akershus.
Rangering av søkere reguleres av § 12 i forskrift om opptak til studier ved Høgskolen i Oslo og Akershus.
I enkeltemner kan det åpnes opp for opptak av eksterne deltakere hvis det er ledig kapasitet. Opptakskravet til enkeltemner er spesifisert i den enkelte emneplan.
Frist for innsending av dokumentasjon
All utdanning, praksis og andre forhold som skal gi grunnlag for opptak, må være dokumentert med attesterte kopier ved søknadsfristens utløp.
Søkere som avslutter utdanning som gir grunnlag for opptak etter søknadsfristens utløp, må sende inn foreløpig dokumentasjon innen angitt søknadsfrist.
Klage på opptak
Klage på opptak til masterstudiet stiles til Seksjon for opptak og veiledning ved OsloMet - storbyuniversitetet.
-
Internationalisation
Ingeniør- og teknologifag er internasjonale. Mye av pensumlitteraturen er på engelsk og flere systemer og arbeidsverktøy har engelsk som arbeidsspråk. Deler av undervisningen kan gjennomføres på engelsk. Det vil framkomme i den enkelte emneplan hvilke emner dette gjelder. Studentene får dermed god erfaring med og kunnskap i engelsk fagterminologien for ingeniørfag.
Ingeniør- og teknologistudier er også tilrettelagt for internasjonalisering gjennom at studenter kan ta delstudier i utlandet. Se https://student.oslomet.no/hvor-nar
BA i matematisk modellering og datavitenskap har flere partnere, som studenter kan reise på utveksling til, i/fra og med femte semester. For mer informasjon om dine utreisemuligheter, se nettsiden om utveksling for programmet ditt: Utvekslingsavtaler | Utveksling - Student - minside (oslomet.no)
For innreisende studenter legges det opp til at studiet tilbyr engelskspråklige emner i femte semester.
Du kan også velge å skrive BA-prosjektet ditt i 6. semester ved å gjennomføre The European Project Semester (EPS), enten ved en av våre partnerinstitusjoner eller her ved OsloMet. Nærmere informasjon om hvor du kan gjennomføre EPS ute finner du på nettsiden om utveksling for programmet ditt: Utvekslingsavtaler | Utveksling - Student - minside (oslomet.no). Dersom du ønsker å gjennomføre EPS hjemme, finner du informasjon her: https://www.oslomet.no/en/study/tkd/european-project-semester
Generell informasjon om EPS: http://europeanprojectsemester.eu/
-
Work requirements
På masterstudiet i journalistikk legges det vekt på variasjon i arbeids- og undervisningsformer.
Studiets arbeids- og undervisningsformer vil være forelesninger, seminarer, gruppearbeid med veiledning samt oppgaveløsning. Under arbeidet med masteroppgaven inngår fellesseminarer og individuell veiledning. Studentene oppfordres til å etablere kollokviegrupper. Arbeids- og undervisningsformer for hvert emne er valgt ut fra hva som best kan føre fram til forventet læringsutbytte.
Oppnådd læringsutbytte av forelesninger vil være å bli introdusert til viktige kunnskapsområder og få en forståelse av kjerneområdene i journalistikken.
Tradisjonelle forelesninger suppleres av arbeids- og undervisningsformer der det legges opp til studentaktive læringsformer med vekt på drøfting, samarbeid og medstudentrespons. Oppnådd læringsutbytte av seminarer og gruppearbeid med veiledning og oppgaveløsning vil være evnen til å orientere seg selvstendig innenfor et journalistfaglig materiale, vise evne til nytenkning og refleksjon over egen journalistisk praksis, kunne presentere egen journalistikkforskning på en forståelig måte samt vise evne til kritisk og konstruktiv analyse av andres journalistikk og -forskning.
Individuell veiledning vil være den sentrale arbeidsformen for utvikling av masteroppgaven. Oppnådd læringsutbytte av individuell veiledning vil være å kunne gjennomføre et selvstendig, avgrenset forsknings- eller utviklingsprosjekt innen journalistikk i tråd med gjeldende forskningsetiske normer samt være i stand til å analysere journalistiske og forskningsetiske problemstillinger. Studentene oppfordres under arbeidet med masteroppgaven til å etablere kollokviegrupper. Læringsutbytte av slike kollokviegrupper vil være å kunne drøfte kritisk med medstudenter egne slutninger på grunnlag av et stort materiale og gjennom konstruktiv tilbakemelding stimulere hverandre til videre utvikling av oppgaven.
-
Assessment
Bestemmelser om eksamen er gitt i lov om universiteter og høgskoler og forskrift om studier og eksamen ved OsloMet - storbyuniversitetet og forskrift om rammeplan for ingeniørutdanning. Se universitetets nettsider: www.oslomet.no
Skriftlig skoleeksamen
En oppsummerende slutteksamen arrangert som en skriftlig prøve med eksamensvakter. Besvarelsene leveres med kandidatnummer, ikke navn.
Muntlig eksamen
Muntlig og praktiske eksamener skal ha to sensorer da disse eksamensresultatene ikke kan påklages. Normal varighet ca. 30 min. Formelle feil kan likevel påklages.
Mappevurdering
Mappevurdering gis en helhetlig vurdering med én karakter.
Det er kun mulig å påklage eksamensresultatet på mappevurderingen som helhet. Hvis deler av mappen inneholder elementer som for eksempel en muntlig presentasjon, praktiske arbeider og lignende, kan eksamensresultatet ikke påklages. Klageadgang framkommer i hver emneplan.
Eksamener som kun sensureres internt, skal jevnlig trekkes ut til ekstern sensurering.
Hjemmeeksamen over lengre tid
En skriftlig oppgave som studentene arbeider med innenfor oppgitte tidsrammer, som regel mot slutten av semesteret. Oppgavens tema er oppgitt eller godkjent av emneansvarlig. Varigheten av en hjemmeeksamen kan være fra 2 dager og opp til to uker. Det er forventet at studentene diskuterer tolkningen av oppgaveteksten og besvarelsene seg imellom, selv om besvarelsen leveres individuelt.
Kortere hjemmeeksamen
Her er normalt alle hjelpemidler tillatt, utenom kommunikasjon med andre. For å begrense kandidatenes mulighet for uønsket samarbeid med andre vil den mest naturlige eksamensoppgaven være en skriveoppgave (essay eller lignende).
Deleksamen
Deleksamen er når ett emne kombinerer ulike eksamensformer, f.eks. en del skriftlig og en del muntlig, eller en gruppeeksamen og en individuell. Det kan og være to skriftlige innleveringer. Denne kan også benyttes hvor det hvor det er ønskelig at studentene skal få delkarakter underveis i semesteret med ulike frister for når de ulike delene skal leveres inn.
Dersom sensur faller til forskjellige tidspunkt, må det fremgå når studentene kan fremsette klage, normalt er dette etter at totalt karakteren er gitt, for andre løsninger må det fremkomme.
I emneplanen må det oppgis om det gis samlet karakter eller delkarakterer, og evt. hvordan delkarakterene vektes. Om alle deler må være bestått for å få bestått karakter. For totalkarakteren på deleksamen gjøres utregningen automatisk.
Vurderingsuttrykk
Vurderingsuttrykk ved eksamen skal være bestått/ikke bestått (B/IB) eller en gradert skala med fem trinn fra A til E for bestått og F for ikke bestått.
Forkunnskapskrav og studieprogresjon
Forkunnskap ut over opptakskravet er beskrevet i den enkelte emneplan.
Selv om det ikke skulle foreligge spesifikke forkunnskapskrav bør studentene ha en progresjon på minst 50 studiepoeng hvert år for å kunne gjennomføre studiet på normert tid.
- Fra 1. studieår opp til 2. studieår - 50 studiepoeng bør være bestått
- Fra 1. og 2. studieår opp til 3. studieår - 100 studiepoeng bør være bestått
Studenter må være registrert i 3. studieår og ha bestått minimum 100 studiepoeng fra 1. og 2. studieår per 1. oktober, før bacheloroppgaven tildeles.
Tilsynssensorordning
Tilsynssensorordningen er en del av kvalitetssikringen av det enkelte studium. En tilsynssensor er ikke en eksamenssensor, men en som har tilsyn med kvaliteten i studiene. Alle studier ved OsloMet - storbyuniversitetet skal være under tilsyn av tilsynssensor, men det er rom for ulike måter å praktisere ordningen på. Viser til retningslinjer for oppnevning og bruk av sensorer ved OsloMet, ser her: https://student.oslomet.no/retningslinjer-sensorer
Utsatt/ny eksamen
Oppmelding til ny/utsatt eksamen gjøres via StudWeb. Ny/utsatt eksamen arrangeres normalt sammen, tidlig i påfølgende semester. Ny eksamen - for studenter som har levert eksamen og ikke fått bestått. Utsatt eksamen - for studenter som ikke fikk avlagt ordinær eksamen. Vilkårene for å gå opp til ny/utsatt eksamen gis i forskrift om studier og eksamen ved OsloMet - storbyuniversitetet.
Vitnemål
På vitnemålet for bachelor i ingeniørfag – matematisk modellering og datavitenskap føres avsluttende vurdering for hvert emne. Tittel på bacheloroppgaven framkommer også på vitnemålet.
-
Other information
Flerkulturelt og internasjonalt perspektiv
Sammenhengen mellom utenriksjournalistikk og journalistikk om det flerkulturelle samfunn blir utforsket teoretisk og metodisk. I emner som Språk og diskurs i journalistikken samt Gender, Media and Journalism, inngår det flerkulturelle og internasjonale perspektivet både i pensum og i praktiske eksempler.
Det flerkulturelle og internasjonale perspektivet ivaretas også ved at det tilbys flere valgfrie emner på engelsk. På disse emnene deltar både norske og utenlandske studenter, og studentene bruker erfaringer fra sine respektive hjemland i det pedagogiske opplegget.