Programplaner og emneplaner - Student
PPUDPRA10 Teaching practice, 1st period Course description
- Course name in Norwegian
- 1. praksisperiode
- Study programme
-
Postgraduate Certificate in EducationPostgraduate Certificate in EducationPostgraduate Certificate in EducationPostgraduate Certificate in Education
- Weight
- 0.0 ECTS
- Year of study
- 2022/2023
- Curriculum
-
FALL 2022
- Schedule
- Programme description
- Course history
-
Introduction
Se utfyllende informasjon om praksis i programplanen
Learning outcomes
Se utfyllende informasjon om praksis i;programplanen
Content
The final assessment consists of an individual oral exam. Scope: approx. 25 minutes. The individual oral exam will comprise a 10-minute individual lecture followed by 15 minutes of examination.
Resit/rescheduled exams
Resits/rescheduled exams are organised in the same way as ordinary exams.
The students’ rights and obligations in connection with resit and rescheduled exams are set out in the Regulations Relating to Studies and Examinations at OsloMet. It is the students’ responsibility to register for the exams.
Teaching and learning methods
Se utfyllende informasjon om praksis i;programplanen
Course requirements
The supplementary subject Language, Text and Mathematics builds on the basic knowledge, skills and competence the students acquired in the second year of study in the knowledge area language, text and mathematics. The course is intended to give the students in-depth knowledge relating to the knowledge area language, text and mathematics and to develop their skills in relation to educational work on language, text and mathematics in early childhood education and care (ECEC) centres, as well as develop their identify as future leaders and professional practitioners. Children’s and adults’ texts in ECEC centres will be a recurring perspective throughout the course.
The course description for Language, Text and Mathematics is based on the National Curriculum Regulations for Kindergarten Teacher Education and the National Guidelines for Kindergarten Teacher Education, and is part of the full-time Bachelor’s Programme in Early Childhood Education and Care. The course is taught in the second year of the programme.
Assessment
None
Permitted exam materials and equipment
After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and competence:
Knowledge
The student
- has in-depth knowledge of children’s linguistic development and mathematical concept formation and exploration among all children in ECEC centres
- has nuanced knowledge about children’s encounters with writing, literary genres, storytelling and modern text and media cultures
- has nuanced and in-depth knowledge about various forms of documentation of children’s play, learning and development
- has in-depth knowledge about the use of documentation to highlight ECEC centres’ educational work
- has increased knowledge of supervision methods
- has in-depth knowledge of what affects inclusion processes in ECEC centres’ play and learning environment
Skills
The student
- can use, document and reflect critically on the form and content of educational situations in ECEC centres
- can have meaningful interactions with children about shape and space, e.g. through the use of books, drawings and/or maps
- can use their knowledge about children’s linguistic development to involve external partners
- can lead and supervise ECEC centre staff and parents in work on language, text and mathematics
- can use documentation relating to children’s play and reflect critically on this use
- masters group supervision, focusing on one-on-one supervision
General competence
The student
- can facilitate and use different forms of documentation in educational work on children’s linguistic, literary and mathematical development
- is familiar with how to communicate and discuss relevant issues in a professional context, both orally and in writing
- can contribute to good conversations and aesthetic experiences for all children
- can make ethical assessments relating to documentation of children and children’s play
Grading scale
Etter å ha gjennomført dette emnet har studenten følgende læringsutbytte definert i form av kunnskap, ferdigheter og generell kompetanse.
Kunnskap
Studenten kan
- gjøre rede for den deriverte som momentan endring
- ta utgangspunkt i definisjonen av den deriverte, og gjøre rede for hvordan man kan bestemme en tilnærmet verdi av den deriverte numerisk
- regne ut eksakte verdier av den deriverte ved å bruke analytiske metoder, og sammenlikne svaret med numeriske verdier
- bruke den deriverte til å løse optimaliseringsproblemer
- gjøre rede for det ubestemte integralet som antiderivert
- bruke numeriske og analytiske metoder til å beregne bestemte integraler
- forklare hvordan man kan bruke det bestemte integralet til å regne ut størrelser som f eks areal, volum, arealmoment, ladning eller andre størrelser
- gjøre rede for analytiske og numeriske løsningsmetoder for første ordens differensiallikninger, som for eksempel separasjon av variable, retningsfelt og Eulers metode
- regne med komplekse tall
- løse andre ordens homogene og inhomogene differensiallikninger med konstante koeffisienter, både med reelle og komplekse løsninger av den karakteristiske likningen
- å løse systemer av differensiallikninger
- regne med vektorer, matriser og determinanter
- overføre totalmatriser for likningssystemer til redusert trappeform
- gjøre rede for betingelser som må være oppfylt for at det skal være mulig å regne ut den inverse til matriser
- gjøre rede for antall løsninger til et lineært likningssystem
- beskrive lineære transformasjoner ved hjelp av matriser
- bruke dataverktøy til å løse problemer i lineær algebra
- løse likninger ved for eksempel halveringsmetoden, sekantmetoden og Newtons metode.
Ferdigheter
Studenten kan
- anvende den deriverte til å modellere og analysere dynamiske systemer
- diskutere hvordan ideen bak definisjonen av det bestemte integralet kan brukes til å sette opp integraler for beregning av størrelser
- drøfte ideene bak noen analytiske og numeriske metoder som brukes for å løse differensiallikninger, og sette opp og løse differensiallikninger for praktiske problemer som er relevante innen eget fagområde
- drøfte metoder for å løse lineære likningssystemer ved hjelp av matriseregning og drøfte numeriske metoder for å løse likninger, og sette opp og løse likninger for praktiske problemer fra eget fagområde
Generell kompetanse
Studenten kan
- vurdere resultater fra matematiske beregninger
- forklare og bruke grunnleggende numeriske algoritmer som inneholder kodeelementene tilordning, for-og while-løkker og if-tester.
- skrive presise forklaringer og begrunnelser til framgangsmåter, og demonstrere korrekt bruk av matematisk notasjon
- vurdere egne og andre studenters faglige arbeider, og formulere skriftlige og muntlige vurderinger av disse arbeidene på en faglig korrekt og presis måte
- overføre et praktisk problem fra eget fagområde til matematisk form, slik at det kan løses - analytisk eller numerisk
- bruke matematiske metoder og verktøy som er relevante for eget fagfelt
- bruke matematikk til å kommunisere om ingeniørfaglige problemstillinger
- gjøre rede for at endring og endring per tidsenhet kan måles, beregnes, summeres og inngå i likninger
Examiners
The following required coursework must be approved before the student can take the exam:
- Individual written assignment: Op-ed article. Scope: around 1,000 words. Each student must also provide peer feedback to two other students in writing. Scope of each peer feedback: around 200–350 words.
- Coursework requirements relating to a children’s culture festival, consisting of the following elements:
- Practical work in groups carried out in kindergarten. The practical work must be documented through a multimodal text aimed at parents. Scope: maximum three pages/ five minutes.
- Written reports in groups after the children`s culture festival. Scope: around 1,000 words.
- Presentations in groups of the work related to the children`s culture festival.Scope: around 15 minutes.
More detailed information about coursework requirements is available in the programme description for the full-time Bachelor’s Programme in Early Childhood Education and Care (180 credits).
Academic activities with compulsory participation
The students must have participated in the following academic activities before they can take the exam:
- Seminar on language mapping in the kindergarten
- Seminar on various guidance topics
- Interdisciplinary seminar in Norwegian and mathematics
- Seminar on mathematical patterns
An 80% attendance requirement applies to the teaching
The attendance requirement for all teaching activities is 80%.
More detailed information about the teaching and participation requirements is available in the programme description for the full-time Bachelor’s Programme in Early Childhood Education and Care (180 credits).
Suitability assessment
See the programme description for the full-time Bachelor’s Programme in Early Childhood Education and Care (180 credits) for further information.