EPN

MABY5200 Structural Dynamics Emneplan

Engelsk emnenavn
Structural Dynamics
Studieprogram
Master's Degree Programme in Structural Engineering and Building Technology
Omfang
10 stp.
Studieår
2022/2023
Timeplan
Emnehistorikk

Innledning

Structures are often subjected to dynamic loads during their lifetime. This course aims to equip students with knowledge in structural dynamics, with particular emphasis on the building and bridge structures. The course is intended to provide necessary knowledge to determine the structural response to dynamic loads. Topics include single-degree-of-freedom (SDOF) systems, response to harmonic loading, response to impulsive transient loading, numerical integration, element stiffness, mass and damping matrices, multi-degree-of-freedom (MDOF) systems, damping, and eigenvalue problems. Theoretical knowledge on structural dynamics will be supplemented by its application on different structural engineering problems such as vibration control, system identification, earthquake response.

Anbefalte forkunnskaper

No formal requirements over and above the admission requirements.

Læringsutbytte

After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and general competence:

Knowledge:

The student:

  • has knowledge to establish equation of motion for SDOF and MDOF systems
  • has knowledge to model structural damping
  • has knowledge to compute the key-concepts related to structural dynamics, such as natural frequencies, mode shapes, damping and vibration characteristics of structures.
  • has in-dept knowledge about the assumptions and limitations of the structural dynamics theory.

Skills:

The student

  • is capable of recognizing physical phenomenon in the context of structural vibration
  • can formulate the equation of motion for dynamics analysis of structures
  • can establish necessary matrices for the equation of motion, stiffness, mass and damping matrix
  • can calculate response from harmonic and transient loads
  • can use computer programming tools (e.g. Matlab) to perform modelling and dynamic analysis of simple structural systems
  • can conduct dynamic analysis using commercially available software.

General Competence:

The student is able to:

  • design structures with the consideration of structural dynamics.
  • solve engineering problems in the context of structural dynamics
  • assess the need for dynamic analysis in structural design
  • characterize the dynamic properties of a structure such as natural periods and mode shapes.

Arbeids- og undervisningsformer

The teaching will consist of lectures and voluntary exercises.

Arbeidskrav og obligatoriske aktiviteter

None

Vurdering og eksamen

Portfolio assessment subject to the following requirements:

  1. Project report prepared in groups of 2-3 students. Approximately 40-50 pages 
  2. Four individual assignments 

Each student’s work will be assessed together as portfolio with one individual grade at the end of the semester, but both parts that make up the portfolio must be assessed as "pass" in order for the student to pass the course. The overall assessment can be appealed.

Hjelpemidler ved eksamen

All aids allowed.

Vurderingsuttrykk

Graded scale A-F.

Sensorordning

Two internal examiners. External examiners is used regularly.

Emneansvarlig

Emrah Erduran