Programplaner og emneplaner - Student
VERND3900 Faglig fordypning Emneplan
- Engelsk emnenavn
- Written Research Project
- Studieprogram
-
Bachelorstudium i vernepleie, deltid, BærumBachelorstudium i vernepleieBachelorstudium i vernepleie, deltid, Lillestrøm
- Omfang
- 15.0 stp.
- Studieår
- 2022/2023
- Programplan
-
- Emnehistorikk
-
Innledning
Bachelorstudiet i vernepleie avsluttes med et selvstendig dokumentasjonsarbeid - en bacheloroppgave. Arbeidet med bacheloroppgaven går på heltid over åtte uker.;
Forkunnskapskrav
This course covers the fundamentals of the Finite Element method and moves on to include advanced topics on the subject. It focuses on displacement-based isoparametric formulation of elements for an arbitrary discretized geometries in n-dimensional space. The course encompasses enough material for analysts and designers but also allows those keen on conducting research in the field to become aware of the methods and obstacles. As a numerical method, it may only be understood when it is used, therefore both Python coding and commercial software (ABAQUS) are treated as tools and several assignments, an individual project, and a group project are defined to ensure the knowledge learnt may be put into practice.
Læringsutbytte
Knowledge
The candidate
- can explain when and why finite element analyses are required
- can describe the finite element discretization of continuum mechanics equations
- can form mass and stiffness matrices and analyze simple structures using matrix analyses
- can describe Neumann, Dirichlet, and Robin boundary conditions in finite element analyses
- can explain different types of nonlinearities and implicit and explicit dynamic analyses
- can describe the principal idea of the isoparametric finite element formulation.
Skills
The candidate
- can form mass and stiffness matrices based on consistent isoparametric formulation and analyze simple structures using matrix analyses
- can calculate the entries of dense and sparse finite element matrices for continuum, beam, and shell elements
- can study solid mechanics problems, such as statics, implicit and explicit dynamics, and heat transfer, using FEM
- can use FEM to calculate eigenvalues and vibrational modes of a dynamic system
- can analyze the buckling behavior of simple structures and calculate the critical buckling load using the linear perturbation method
- can calculate and evaluate the post-buckling path for a structure under loading using the Riks arc-length method
- can apply relevant methods for solving problems, including ABAQUS and Python coding
- can apply ABAQUS to set up models and run simulations on complex systems.
General competence
The candidate:
- can transfer a practical engineering problem into a FEM problem and assess the numerical results by comparing them with analytical solutions or experimental results
- can communicate numerical results through a report, using accurate and appropriate terminology of FEM
- can contribute to sustainability by allowing for reduction in consumption of volume of materials during manufacturing, also through efficient problem solving and saving on electricity use and quick improved design through virtual testing
- can contribute to innovation in FEM through modeling discontinuities in structures, such as void, crack, and material interfaces, by enriching the approximation space using extended FEM
- can conduct a project in line with the instructions provided and within the bounds of ethical conduct.
Arbeids- og undervisningsformer
Forelesninger, veiledning, selvstendig arbeid med oppgaven.
Arbeidskrav og obligatoriske aktiviteter
Følgende arbeidskrav må være godkjent for å fremstille seg til avsluttende vurdering:
- Flervalgstest gjennomføres tilstrekkelig antall ganger til oppnådd 90% korrekte svar
- Utarbeide skisse for bacheloroppgaven.
Vurdering og eksamen
The following coursework requirements must have been approved for the student to take the exam:
Four individual assignments (3-5 pages each) comprising deriving the governing equations for a system and solving small systems of equations for low degree-of-freedom prototypes using Python codes. The assignments must include an explanation of the problem and the solution procedure. The solutions must be analyzed and correlated with analytical results when possible.
Hjelpemidler ved eksamen
Alle
Vurderingsuttrykk
Gradert skala A-F.
Ved ikke bestått bacheloroppgave har studenten anledning til å levere omarbeidet versjon to (2) ganger. Dersom studenten ønsker å forbedre en bestått karakter på bacheloroppgaven, kan oppgaven omarbeides én (1) gang. Siden besvarelsen er knyttet opp til praksisgjennomføring stilles det ikke krav om å utarbeide en ny, egenformulert problemstilling ved 2. og 3. forsøk. Det gis inntil 2 timer veiledning ved karakteren F. Det gis ikke veiledning ved forbedring av karakter.
Sensorordning
Lecture notes, textbooks, opensource codes, available Python codes, YouTube online lectures