EPN-V2

MAELD4100 Fysioterapi for hjemmeboende eldre personer Emneplan

Engelsk emnenavn
Physiotherapy for Home-dwelling Elderly People
Omfang
10.0 stp.
Studieår
2024/2025
Emnehistorikk
Timeplan
  • Innledning

    Undervisningsspråk: Norsk

    Emnet omfatter kunnskap om hjemmeboende eldre menneskers livssituasjon ut fra individuelle, samfunnsmessige og kulturelle perspektiver og rammer. Problemstillinger knyttet til svakstilte og utsatte grupper eldre blir spesielt vektlagt. Ulike teoretiske og analytiske perspektiver innen gerontologi og geriatri trekkes inn for å belyse hvordan eldre menneskers livssituasjon påvirker deres opplevelse, erfaringer, aktivitet og deltakelse. Det fokuseres på eldre som aktive aktører i sin hverdag og på deres egen forståelse og opplevelse av sin situasjon.

  • Forkunnskapskrav

    Studenten må være tatt opp på masterstudiet i helsevitenskap og ha autorisasjon som fysioterapeut.

    Det forutsettes at studenten har/eller skaffer seg tilgang til fysioterapifaglig arbeid med eldre personer ved gjennomføring av emnet.

  • Læringsutbytte

    Students taking the course must have a thorough knowledge of advanced calculus, including ordinary and partial differential equations. The student should also be familiar with linear algebra and Fourier and Laplace transform theory. In terms of programming, the candidate should have some experience in implementing numerical methods, including schemes for solving partial differential equations.

    The candidate should also have a certain knowledge of mathematical analysis, modern physics or physiology – depending on specialization.

    The course will be offered once a year, provided 3 or more students sign up for the course. If less than 3 students sign up for a course, the course will be cancelled for that year.

  • Arbeids- og undervisningsformer

    None.

  • Arbeidskrav og obligatoriske aktiviteter

    Students who complete the course are expected to have the following learning outcomes, defined in terms of knowledge, skills and general competence:

    Knowledge

    On successful completion of the course, the student:

    • knows how mathematical models can be derived from facts and first principles.
    • has a repertoire of methods to solve and/or analyse both ordinary differential equation (ODE) systems and certain partial differential equations (PDEs).
    • is able to apply analytical and/or numerical solution methods for PDEs to models of heat transfer, wave propagation and diffusion-convection and discuss the relevance of these models to real-world phenomena.
    • is able to construct and develop relevant models and discuss the validity of the models.

    Skills

    On successful completion of the course, the student can:

    • can determine steady states of ODE systems and use linear approximation to elucidate the stability properties of these states.
    • can solve and/or analyse selected PDE models.
    • is able to implement and use some numerical methods for solving relevant PDEs.
    • can devise the solution of certain composite quantitative problems.
    • can disseminate results and findings in an accessible manner – both orally and in writing.

    General competence

    • is aware of the usefulness and limitations of mathematical modelling as well as of pitfalls frequently encountered in modelling and simulation.
    • is able to discuss properties of a system using the equations of the mathematical model that describes the system.
    • can explain and use numerical methods, know their strengths and weaknesses and interpret results of numerical simulations.
  • Vurdering og eksamen

    The teaching is organised as sessions where the subject material is presented, and as sessions where the students solve problems using analytical and/or numerical methods. Between these sessions, the students should work individually with literature studies and problem solving.

    In the last, specialised part, the students are required to complete and present a rather extensive individual project involving theoretical and practical/implementational aspects.

  • Hjelpemidler ved eksamen

    The following required coursework must be approved before the student can take the exam:

    • Completion of an extensive individual project in the specialised module.
  • Vurderingsuttrykk

    An individual, oral examination. The examination will address both general topics from within the course and the specific project developed by the student.

    The oral examination cannot be appealed.

  • Sensorordning

    The student's own project.

  • Emneoverlapp

    Pass or fail.