EPN-V2

MABY5200 Structural Dynamics Course description

Course name in Norwegian
Structural Dynamics
Study programme
Master’s Programme in Civil Engineering
Weight
10.0 ECTS
Year of study
2024/2025
Curriculum
FALL 2024
Schedule
Course history

Introduction

Alle hjelpemidler er tillatt så lenge regler for kildehenvisning følges.

Recommended preliminary courses

No formal requirements over and above the admission requirements.

Required preliminary courses

Bestått - ikke bestått

Learning outcomes

After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and general competence:

Knowledge:

The student:

  • has knowledge to establish equation of motion for SDOF and MDOF systems
  • has knowledge to model structural damping
  • has knowledge to compute the key-concepts related to structural dynamics, such as natural frequencies, mode shapes, damping and vibration characteristics of structures.
  • has in-dept knowledge about the assumptions and limitations of the structural dynamics theory.

Skills:

The student

  • is capable of recognizing physical phenomenon in the context of structural vibration
  • can formulate the equation of motion for dynamics analysis of structures
  • can establish necessary matrices for the equation of motion, stiffness, mass and damping matrix
  • can calculate response from harmonic and transient loads
  • can use computer programming tools (e.g. Matlab) to perform modelling and dynamic analysis of simple structural systems
  • can conduct dynamic analysis using commercially available software.

General Competence:

The student is able to:

  • design structures with the consideration of structural dynamics.
  • solve engineering problems in the context of structural dynamics
  • assess the need for dynamic analysis in structural design
  • characterize the dynamic properties of a structure such as natural periods and mode shapes.

Teaching and learning methods

Bestått

KDM3010 Material, produksjon og teknologi

KDM 3400 2D- og 3D digitalt produksjonsverktøy

KDM 3110 Innovasjon og konseptutvikling

KDM 2050 Motehistorie og teori

Course requirements

5 studiepoeng overlapp mot KDM3300.

Assessment

Portfolio assessment subject to the following requirements:

  1. Project report prepared in groups of 1-2 students. Approximately 20-30 pages
  2. Four individual assignments

Each student’s work will be assessed together as portfolio with one individual grade at the end of the semester, but both parts that make up the portfolio must be assessed as "pass" in order for the student to pass the course. The overall assessment can be appealed.

Permitted exam materials and equipment

All aids allowed.

Grading scale

Graded scale A-F.

Examiners

One internal examiner. External examiners is used regularly.

Course contact person

Emrah Erduran