EPN-V2

KFKMU26100 Emne 1: Tall, algebra og funksjoner Emneplan

Engelsk emnenavn
Subject 1: Mathematics 2U
Studieprogram
Matematikk 2MU, trinn 5-10
Omfang
15.0 stp.
Studieår
2021/2022
Timeplan
Emnehistorikk

Innledning

I emne 1 er det fokus på tall, algebra og funksjoner. Innenfor tall vil det fokuseres på rasjonale og irrasjonale tall. Utvikling av algebraisk tenkning gjennom ulike tilnærminger som generaliseringsperspektivet, funksjonsperspektivet og modelleringsperspektivet vektlegges.

Anbefalte forkunnskaper

Del 1 Individuell skriftlig eksamen på tre timer, som teller 70 prosent.

Del 2 Prosjektarbeid i gruppe på tre til fem studenter og som teller 30 prosent. Rapport, gjennomføring, muntlig og visuell presentasjon i gruppe vurderes. Mulighet for individuell vurdering

Eksamensdel 1) Eksamensresultat kan påklages.

Eksamensdel 2) Eksamensresultat kan ikke påklages.

Begge eksamensdelene må være vurdert til karakter bestått/E eller bedre for at studentene skal kunne få bestått emnet.

Ved en eventuell og ny utsatt individuell skriftlig eksamen kan muntlig eksamensform bli benyttet. Hvis muntlig eksamen benyttes til ny og utsatt eksamen, kan denne ikke påklages.  

Forkunnskapskrav

Opptak til studiet.

Læringsutbytte

Etter fullført emne har studenten følgende læringsutbytte definert som kunnskap, ferdigheter og generell kompetanse:

Kunnskap

Studenten

  • har inngående undervisningskunnskap i matematikken elevene arbeider med på trinn 5-10, særlig tallforståelse og regning, overgangen fra aritmetikk til algebra, algebra og funksjoner
  • har undervisningskunnskap knyttet til ulike matematiske bevis- og argumentasjonsformer, og erfaring med matematiske teoribygninger innen for eksempel geometri, trigonometri, algebra, kombinatorikk og sannsynlighetsteori
  • har god kunnskap i matematisk analyse, inkludert derivasjon, integrasjon og enkle matematiske modeller, og kan relatere disse begrepene til det matematikkfaglige innholdet i trinn 5-10
  • har kunnskap om språkets rolle for læring av matematikk
  • har kunnskap om vanlige interaksjonsmønster og kommunikasjon knyttet til matematikkundervisning
  • har kunnskap om den betydningen representasjonsformer har i matematikk, og hvilke utfordringer som er knyttet til overganger mellom representasjonsformer
  • har undervisningskunnskap om betydningen av regning som grunnleggende ferdighet i alle skolefag
  • har kunnskap om å uttrykke seg muntlig, lese, uttrykke seg skriftlig og kunne bruke digitale verktøy i matematikkfaget
  • har kunnskap om matematikkfagets innhold på de ulike trinnene i grunnskolen og i videregående skole, og om overgangene mellom trinnene i grunnskolen og ungdomstrinn/videregående skole
  • har kunnskap om ulike teorier for læring, og om sammenheng mellom læringssyn og fag- og kunnskapssyn
  • har kunnskap om et bredt metoderepertoar for undervisning i matematikk
  • har innsikt i og erfaring med bruk av ulike læremidler, både digitale og andre, og muligheter og begrensninger ved slike læremidler
  • har kunnskap om matematikkens historiske utvikling

Ferdigheter

Studenten

  • kan planlegge, gjennomføre og vurdere matematikkundervisning for alle elever på trinn 5-10, med fokus på variasjon og elevaktivitet, forankret i forskning, teori og praksis
  • har gode praktiske ferdigheter i muntlig og skriftlig kommunikasjon i matematikkfaget, og kompetanse til å fremme slike ferdigheter hos elevene
  • kan bruke arbeidsmåter som fremmer elevenes undring, kreativitet og evne til å arbeide systematisk med utforskende aktiviteter, begrunnelser, argumenter og bevis
  • kan bruke og vurdere kartleggingsprøver og ulike observasjons- og vurderingsmåter, for å tilpasse opplæringen til elevenes ulike behov
  • kan tilpasse opplæring både for lavt- og høytpresterende elever
  • kan vurdere elevenes måloppnåelse med og uten karakterer, og begrunne vurderingene
  • kan kommunisere med elever, enkeltvis og i ulike gruppesammensetninger, lytte til, vurdere og gjøre bruk av elevers innspill, og institusjonalisere kunnskap
  • kan analysere og vurdere elevers tenkemåter, argumentasjon og løsningsmetoder fra ulike perspektiver på kunnskap og læring
  • kan forebygge og oppdage matematikkvansker og tilrettelegge for mestring hos elever med ulike typer matematikkvansker
  • kan bruke digitale verktøy og digitale læringsressurser i planlegging, gjennomføring og vurdering av undervisning

Generell kompetanse

Studenten

  • har forståelse for matematikkfagets betydning som allmenndannende fag og dets samspill med kultur, filosofi og samfunnsutvikling
  • har innsikt i matematikkfagets rolle innenfor andre fag og i samfunnet for øvrig
  • har innsikt i matematikkfagets betydning for deltakelse i et demokratisk samfunn

Innhold

Tall, algebra og funksjoner

  • Arbeide med tall og tallregning i skolen med spesielt fokus på brøk, potenser og røtter.
  • Utvikle god kunnskap om ulike tilnærminger til algebra som generalisert aritmetikk, funksjoner, modellering og problemløsning.
    • Tidlig algebra, arbeid med utvikling av algebraisk tenkning hos elever på mellom og ungdomstrinn
    • Arbeid med likninger, herunder annengradsligninger og ligningssett,
    • Kunne og forstå ulike representasjoner av funksjoner og variabelbegrepet
    • Kunne grunnleggende egenskaper ved sentrale funksjoner
    • Arbeid med modellering av virkeligheten ved hjelp av sentrale funksjonstyper
  • Kjenne betydningen av en kovariant tilnærming til funksjoner for å studere og modellere endring og utvikling.
  • Arbeid med derivasjon av enkle polynomfunksjoner, og knytte dette til målene om endring og utvikling i grunnskolen.
  • Arbeid med integrasjon av enkle polynomfunksjoner.
  • Bruk av Dynamiske læringssystemer (DLS) som GeoGebra for utforskning av matematiske begreper og sammenhenger.
  • Gode kunnskaper om ulike matematikkdidaktiske teorier og rammeverk som bidrar til innsikt om undervisningskunnskap i matematikk knyttet til
    • Planlegging, gjennomføring og evaluering av undervisning
    • Design og valg av gode oppgaver og aktiviteter,
    • Kommunikasjon i matematikk
    • Vurdering i matematikk

Kjerneelementer

Fagets seks kjerneelementer blir ivaretatt ved at de danner grunnlaget for oppgaver og aktiviteter på samlingene. Det vil være fokus på rike oppgaver som inviterer til utforsking og problemløsning og som innebærer ulike varianter av de andre kjerneelementene.

Kjerneelementene i matematikk er:

  • Utforskning og problemløsning
  • Modellering og anvendelser
  • Resonnering og argumentasjon
  • Representasjon og kommunikasjon
  • Abstraksjon og generalisering
  • Matematiske kunnskapsområder

Grunnleggende ferdigheter

Kurset skal gjøre studentene fortrolige med de grunnleggende ferdighetene å kunne uttrykke seg skriftlig og muntlig, å kunne lese og regne og å kunne bruke digitale verktøy i faget matematikk, slik disse er utformet i gjeldende plan for matematikk i grunnskolen.

Arbeids- og undervisningsformer

Arbeidet i kurset vil i hovedsak integrere både faglige og didaktiske aspekter. Kurset er organisert i tre samlinger i høstsemesteret. Samlingene går over to hele dager. Samlingene vil bli brukt til aktiviteter som krever samhandling. Mellom samlingene forventes det at studentene jobber med oppgaver. To av oppgavene vil være arbeidskrav i kurset (se avsnittet «Arbeidskrav»).

Arbeidskrav og obligatoriske aktiviteter

Foruten grunnleggende kunnskap og teori, gir emnet studentene nødvendige ferdigheter og erfaring med å prosjektere varmesystemer i bygninger. Emnet bygger på emner fra først semester i første studieår i masterstudiet.

Vurdering og eksamen

Ingen ut over opptakskrav.

Hjelpemidler ved eksamen

Etter å ha gjennomført dette emnet har studenten følgende læringsutbytte, som definert i kunnskap, ferdigheter og generell kompetanse:

Kunnskap

Studenten har inngående kunnskap om

  • produksjon av energi, bruk av energi og design av varmeforsyningssystemer
  • kjeler, kjelkoblinger, varmepumper, solvarme, fjernvarme, gass med mer for konvertering og overføring av energi
  • lover og regler, energidirektiv og energimerking
  • forbrenningsanlegg (bioenergi, kull, olje, gass) og forbrenningsprosesser
  • fjernvarmeanlegg; produksjon, distribusjon og abonnentsentraler
  • dampsystemer; temperatur, trykk, materialer og systemoppbygning
  • varmelegemer; radiatorer, aerotempere med mer
  • vannbårne anlegg, herunder ekspansjonssystemer, trykkforhold, sikkerhetsinnretninger
  • analysere lønnsomhet, tariffer, driftstid, investeringer, energipriser

Ferdigheter

Studenten kan

  • gjennomføre varmebehovsberegninger
  • vurdere energibehov for bygning relatert til ytre klima med hensyn til uteklimaet, energibevisst arkitektur, varmetransport, varmeisolering, lufttetthet og infiltrasjonstap, internt varmetilskudd og solenergi
  • vurdere bygningers effekt og energimønster; belastningsmålinger, typisk energiforbruksmønster
  • beregne og vurdere riktig regulerings- og styringssystemer
  • analysere anlegg mht. energibruk, økonomi og miljøbelastning
  • vise hvordan tradisjonelle energiformer utnyttes, og de belastninger bruk av slike energikilder fører til for miljøet
  • designe oppvarmingsanlegg; beregne oppvarmingssystemer og energiproduksjonsanlegg; oppvarmingssystemer, kjøleanlegg til luftkondisjonering og varmepumper, ventilasjonssystemer, varmtvannsforsyning og komponenter
  • innregulere vannbårne anlegg
  • dimensjonere rørnett for vannbåren energi

Generell kompetanse

Studenten kan

  • beregne, designe og konstruere varmeproduserende anlegg, distribusjonsanlegg og oppvarmingsanlegg slik at miljøet ikke blir belastet unødvendig
  • kan formulere og analysere problemstillinger ved bruk av vitenskapelige metoder i prosjektarbeid

Vurderingsuttrykk

Forelesninger, øvinger og prosjektarbeid.

Sensorordning

Følgende arbeidskrav må være godkjent for å kunne fremstille seg til eksamen:

  • To individuelle øvinger, hver på tre til fem sider.

Opptakskrav

Se programplanen.