EPN-V2

K1MB6100 Matematikk 1 for trinn 1-7, emne 1 Emneplan

Engelsk emnenavn
Mathematics 1 for Grades 1-7, Course 1
Studieprogram
Matematikk 1MB, 1.-7. trinn
Omfang
15.0 stp.
Studieår
2020/2021
Timeplan
Emnehistorikk

Innledning

Overordnet mål for emnet er at studentene utvikler en handlingsrettet lærerkompetanse i matematikk. Det betyr å kunne legge til rette for praktisk, utforskende og teoretisk arbeid som ivaretar og utvikler elevenes matematikkunnskap. Undervisningen er forskningsbasert og det teoretiske grunnlaget vil omfatte kunnskaper i og om matematikk som fag, om barns læring og utvikling av kunnskap i matematikk, og om undervisning i matematikk. Undersøkende virksomhet og modellering vil stå sentralt gjennom hele emnet.

Forkunnskapskrav

Opptak til matematikk 1 for trinn 1-7.

Innhold

Ingen ut over opptakskrav.

Arbeids- og undervisningsformer

Emnet er organisert i tre samlinger i høstsemesteret. Første samling går over tre dager, de to neste over to dager hver. Universitetets digitale læringsplattform vil bli brukt aktivt. Studentene arbeider i faste grupper gjennom hele studieåret. Studentene forventes å delta aktivt i samlingene og å ta ansvar for egen læring.

Praksis

Studiet legger opp til praksisnærhet. Det er derfor nødvendig at studentene har tilknytning til grunnskolen i studietiden. Studentene skal gjennomføre observasjon og utprøving av undervisningsopplegg mellom samlingene, slik at opplegg og teorier som blir belyst i studiet, kan bli prøvd ut med elever og drøftet ut fra teori i etterkant.

Arbeidskrav og obligatoriske aktiviteter

Arbeidskrav

Arbeidskrav består av tre oppgavebesvarelser i gruppe. Omfang: 600-5400 ord per besvarelse. Oppgavebesvarelsene er knyttet til faglige og didaktiske tema, og inkluderer også drøfting av erfaringer i etterkant av arbeid med elever opp mot teorien i kurset (for eksempel observasjon, samtale, undervisning. Studenter som grunnet dokumentert sykdom blir forhindret fra å delta i gruppearbeid kan gjennomføre arbeidskravet individuelt.

Arbeidskravene i emnet danner grunnlag for muntlig eksamen.

For mer utfyllende informasjon, se programplanen.

Faglige aktiviteter med krav om deltakelse

En vesentlig del av læringen i emnet er knyttet til erfaringsdeling og relasjonskompetanse. Slike ferdigheter og kompetanse kan ikke tilegnes ved selvstudium, men må opparbeides gjennom reell dialog med blant annet medstudenter og lærere og ved tilstedeværelse i undervisningen. Alle samlinger er derfor obligatoriske.

For mer utfyllende informasjon, se programplanen.

Vurdering og eksamen

Avsluttende eksamen gjennomføres i høstsemesteret.

Avsluttende vurderinger er en individuell muntlig eksamen. Omfang: om lag 30 minutter. Karakteren i emnet fastsettes på grunnlag av individuell muntlig eksamen med utgangspunkt i arbeidskravene.

Ny/utsatt eksamen

Ny og utsatt eksamen gjennomføres på samme måte som ved ordinær eksamen.

Studentens rettigheter og plikter ved ny/utsatt eksamen fremgår av forskrift om studier og eksamen ved OsloMet. Studenter er selv ansvarlige for å melde seg opp til eventuell ny/utsatt.

Hjelpemidler ved eksamen

Ingen.

Vurderingsuttrykk

Det gis gradert karakter (A-F).

A: Fremragende prestasjon. Kandidaten viser svært god faglig og didaktisk kunnskap, og svært god evne til selvstendig bruk av kunnskapen, kritisk og kreativt. Viser særdeles god oversikt over emnets faglige og didaktiske innhold, høyt refleksjonsnivå med hensyn til læringsmål, matematikkens egenart og lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Svært gode evner til å redegjøre for faglig innhold, oppfatte problemstillinger og begrunne sine svar presist.

B: Meget god prestasjon. Kandidaten viser meget god faglig og didaktisk kunnskap, og meget god evne til selvstendig bruk av kunnskapen, kritisk og kreativt. Viser meget god oversikt over emnets faglige og didaktiske innhold, og meget god evne til refleksjon over læringsmål, matematikkens egenart og lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Meget gode evner til å redegjøre for faglig innhold, oppfatte problemstillinger og begrunne sine svar presist.

C: Jevnt god prestasjon. Kandidaten viser god innsikt i faglig og fagdidaktisk innhold med god evne til refleksjon og selvstendig bruk av kunnskapen. Viser god evne til refleksjon over læringsmål, matematikkens egenart og lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Kandidaten viser gode evner til å redegjøre for faglig innhold, oppfatte problemstillinger og begrunne sine svar presist.

D: En prestasjon med enkelte vesentlige mangler. Kandidaten viser en del innsikt i de viktigste elementene av faglig og fagdidaktisk innhold, med en viss grad av evne til refleksjon og selvstendig bruk av kunnskapen. Kandidaten viser noe evne til refleksjon over læringsmål, matematikkens egenart og lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Kandidaten viser noe evne til å redegjøre for faglig innhold, oppfatte problemstillinger og begrunne sine svar presist.

E: Prestasjon som tilfredsstiller de faglige minimumskravene til kunnskap, men hvor kunnskapen anvendes på en mindre selvstendig måte. Kandidaten har noe innsikt i viktige elementer av faglig og fagdidaktisk innhold, men kandidatens innsikt er ufullstendig og preget av begrenset forståelse for sammenhengene i emnet. Kandidaten bruker kunnskapen på en lite selvstendig måte og viser lavt refleksjonsnivå om læringsmål, fagets egenart og lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Kandidaten viser noe evne til å redegjøre for faglig innhold, oppfatte problemstillinger og begrunne sine svar.

F (Ikke bestått): Prestasjon som ikke tilfredsstiller de faglige minimumskravene. Utilstrekkelig kunnskap om fag og fagdidaktikk og om lærerens rolle for hvordan barns matematiske kompetanse utvikler seg. Viser lite innsikt i sammenhengen i det faglige innholdet og liten eller ingen evne til å bruke kunnskapen på en selvstendig måte.

Sensorordning

Det benyttes to interne sensorer.

Opptakskrav

Et emne av denne typen inngår i alle datastudier av visst omfang. Dette er en type matematikk som er viktig og som anvendes innen flere datafag. Det omtales også som datamatematikk. Begreper og teknikker fra dette emnet vil kunne være med på å øke studentenes programmeringsferdigheter og forståelse av mange datafaglige problemer.