ACIT4030 Machine Learning for images and 3D data Emneplan

Engelsk emnenavn
Machine Learning for images and 3D data
Master's Programme in Applied Computer and Information Technology
10 stp.


This course will present the state of the art in algorithms for machine learning on images and 3D data. After a brief introduction to image processing and 3D geometry, we will cover topics within both supervised and unsupervised learning. The course covers classical problems like classification, segmentation, and correspondence detection. Recent work on shape and image synthesis will also be discussed. We will in particular study deep neural architectures for 2D images and 3D data such as point clouds and shape graphs. Additionally, 3D shape design with generative models will be presented.

Anbefalte forkunnskaper

We assume good background in programming, machine learning, and linear algebra. Knowledge of computer graphics and image processing is preferable, but not strictly required.


No formal requirements over and above the admission requirements.


Upon successful completion of the course, the candidate:


  • has knowledge of classical problems within graphics and imaging that are applicable to machine learning, such as classification, segmentation, and correspondence detection.
  • has a good understanding of problems related to generation of new images and 3D shapes.


  • is able to apply state-of-the art machine learning algorithms to real-world problems related to imaging and 3D graphics.


  • is aware of the state of the art in algorithms for machine learning on images and 3D data.
  • has experience with real world problems within the course domain, with a focus on solutions using deep neural architectures.


  • Introduction to image processing and geometric modelling
  • Convolutional neural networks for images and graphs
  • Segmentation for images and shapes
  • Correspondences and mappings
  • Modelling, synthesis, and analysis
  • Joint embedding for images and 3D data

Arbeids- og undervisningsformer

Teaching approach is a combination of traditional weekly lectures and assignments, student- led seminars, and a final project. Lectures will present the core theory of the course content and homework will focus on theoretical knowledge. In student-led seminars, topical research papers will be presented and discussed. The final project exposes the student to a chosen real- world problem relevant to the course topic.

Practical training

The student will be exposed to programming with repositories such as ImageNet and ShapeNet and will have created solutions for real-world problems related to data-driven graphics and imaging.

Arbeidskrav og obligatoriske aktiviteter

The following required coursework must be approved before the student can take the exam:

Two mandatory group assignments consisting of technical tasks, summarized in reports (about 10 pages each).

Vurdering og eksamen

The final grade will be based on:

  • Individual student presentation (20% of the final grade)
  • One individually written evaluation of another student presentation (500-1000 words) (10% of the final grade)
  • Individual final project report (between 12 500 and 17 500 words) (70% of the final grade)

All three exams must be passed in order to pass the course.

The oral examination cannot be appealed.


New/postponed exam

In case of failed exam or legal absence, the student may apply for a new or postponed exam. New or postponed exams are offered within a reasonable time span following the regular exam. The student is responsible for applying for a new/postponed exam within the time limits set by OsloMet. The Regulations for new or postponed examinations are available in Regulations relating to studies and examinations at OsloMet.

Hjelpemidler ved eksamen

All printed and written aids and a calculator that cannot be used to communicate with others.


For the final assessment a grading scale from A to E is used, where A denotes the highest and E the lowest pass grade, and F denotes a fail.


Two internal examiners. External examiner is used periodically.


Associate Professor Henrik Lieng