Programplaner og emneplaner - Student
DATA3750 Applied AI and Data Science project Course description
- Course name in Norwegian
- Anvendt kunstig intelligens og data science prosjekt
- Weight
- 10.0 ECTS
- Year of study
- 2021/2022
- Course history
-
- Curriculum
-
SPRING 2022
FALL 2021
- Schedule
-
Introduction
In this course, students will acquire an understanding of some of the most important principles of data science and cognitive technologies through project work and online resources. The students will be introduced to fundamental principles of machine learning, data science and artificial intelligence. The main focus will be on how to use these principles to solve industrial tasks by using open-source or other data science platforms (for instance IBM Watson). The goal is to provide the students with an introduction to machine learning, data science and artificial intelligence using online resources at the same time as the students solve an industrial problem in the form of a comprehensive project work.
In addition to the projects on offer, students can find their own projects within a relevant company, public organization or nonprofit. In this case, it is the student's responsibility to find a supervisor for the project within the external organization. All student-initiated projects must be approved by a supervisor at OsloMet before the start of the project.
The workload for the project should correspond to two days a week over a twelve-week period during either the Spring or Autumn semester. If the project is completed in the summer, the workload should equal four days a week over a six-week period.
The elective course will only run if a sufficient number of students a registered.
-
Recommended preliminary courses
Følgende arbeidskrav må være godkjent før eksamen kan avlegges:
Studenten må ha deltatt på én individuell veiledning i gruppe. Dette innbefatter et muntlig fremlegg om teori og/eller metode, omfang 10-15 minutter. Fremlegget skal bygge på et skriftlig notat (veiledningsgrunnlag) som leveres senest én uke før fremlegget holdes, med et omfang på maksimalt fem sider. Hver student skal også holde en 5-10 minutters forberedt respons på en annen students fremlegg. Hensikten med fremlegget er å tilegne seg relevante teorier og metoder for barnehagerelevant forskning, øve på faglig formidling, dele kunnskap og drøfte fagstoff med andre.
-
Required preliminary courses
No requirements over and above the admission requirements.
-
Learning outcomes
After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and competence:
Knowledge
The student:
- has a basic technological understanding of the most important concepts in machine learning, data science and artificial intelligence
- has knowledge of the most important methods in machine learning, data science and artificial intelligence
- has knowledge of platforms that can be used to complete major data science projects (for instance IBM Watson’s cloud services)
Skills
The student:
- masters basic data science tools and can extract and visualise information from large quantities of data
- understands the workflow in bigger data science, artificial intelligence or machine learning projects
- is capable of using open-source and commercial tools that are used in industrial projects in the fields of data science, machine learning or artificial intelligence
General competence
The student:
- masters methods and tools used to develop and carry out projects in data science, machine learning or artificial intelligence
- is familiar with the different methods that are used to find the right tools to carry out data science projects
- has an overview of how to visualise and manipulate data and how to develop predictive methods for solving industry problems and other issues relevant to working life
-
Teaching and learning methods
Project work is the principal work method used in this course, either individual or in groups of up to five students. The students are given access to relevant online resources, and will receive supervision from an internal and/or external supervisor. The students will work in groups of three to five students to complete a project in data science, machine learning or artificial intelligence in cooperation with relevant external parties such as companies or public organisations. The course can be carried out individually by agreement with the course coordinator.
The projects are chosen/assigned at the start of the semester.
The supervisor will suggest suitable online courses in AI and data science that the students should take during the first few weeks of the course. The students are also encouraged to take other courses (https://cognitiveclass.ai) that will be useful in order to carry out the chosen project assignment. These courses may, among other things, deal with the following areas: Blockchain, the Internet of Things, Chat Bots, advanced use of data science, etc.
These courses should be completed before the students start working on their respective projects.
-
Course requirements
The following coursework is compulsory and must be approved before the student can take the exam:
- The course starts with a compulsory Orientation Meeting.
- A project outline that describes how the group will organise their work on the project.
- A standard learning agreement must be entered into between the project provider/supervisor and the student(s), and this must be approved by the internal supervisor before the project can begin.
- Three minutes of meetings from the supervision meetings held during the project period.
The deadline for submitting the project outline and the minutes of the meetings will be presented in the teaching plan, which is made available at the beginning of the semester.
-
Assessment
A portfolio exam consisting of:
1. A written project report, individual or in groups (max 5 students), 3000 words +/-10%
2. An oral presentation, individual or in groups (max 5 students), 10 minutes + 5 minutes Q&A
The exam result cannot be appealed.
The portfolio is assessed as a whole and given a single grade, but both the project report and the oral presentation must be passed in order for the portfolio to receive a grade E or higher.
For group projects, all members of the group receive the same grade. Under exceptional circumstances, individual grades can be assigned at the discretion of the project supervisor(s) and Head of Studies.
-
Permitted exam materials and equipment
Vitenskapsteori og forskningsmetoder skal være et redskap for arbeidet med masteroppgaven samt gi en innføring i kunnskapsgrunnlaget i forskning om barn og barnehage. Emnet gir en oversikt over ulike vitenskapsteoretiske retninger, forskningsetikk og metodiske tilnærminger, både kvantitative og kvalitative, som blir brukt i barnehageforskningen. Emnet drøfter hvordan teori, etikk og metodologi bidrar til å danne en analytisk ramme for barnehageforskning.
-
Grading scale
Etter fullført emne har studenten følgende læringsutbytte definert som kunnskap, ferdigheter og generell kompetanse:
Kunnskap
Studenten
- har kunnskap om sentrale vitenskapsteoretiske og forskningsmetodologiske temaer innenfor barnehageforskning
- har kunnskap om ulike typer data og etiske og praktiske spørsmål knyttet til datainnsamling i forskning om barn og barnehage
Ferdigheter
Studenten
- kan kritisk lese barnehagerelevant forskning med utgangspunkt i vitenskapsteori, forskningsetikk og metoder
- kan gjennomføre et selvstendig, avgrenset forsknings- eller utviklingsprosjekt under veiledning og i tråd med gjeldende forskningsetiske normer
Generell kompetanse
Studenten
- kan analysere barnehagefaglige fag-, yrkes- og forskningsetiske problemstillinger
- kan anvende sine kunnskaper og ferdigheter for å gjennomføre, barnehagerelevante forsknings- og utviklingsprosjekter
-
Examiners
Undervisningen i dette emnet består av forelesninger i større grupper, hvor alle studieretningene er samlet. I tillegg vil det arrangeres seminarer og gruppearbeid. Seminarer, gruppearbeid og veiledninger vil også kunne foregå digitalt.