EPN-V2

BYPE2200 Surveying and Statistics Course description

Course name in Norwegian
Landmåling og statistikk
Weight
10.0 ECTS
Year of study
2020/2021
Course history
  • Introduction

    The assignment of bachelor’s theses is based on the guidelines applicable to the faculty and the study programme. The thesis is preferably written in cooperation with a business or research community. A supervisor from the study programme will be appointed. For projects carried out in cooperation with an enterprise or public agency, an external supervisor will also be appointed.

  • Required preliminary courses

    Bygger på ELPE1300 elektriske kretser, MEK1100 fysikk og kjemi, og MEK1000 Matematikk 1000.

  • Learning outcomes

    The assessment of the group bachelor’s thesis (4 students) will be based on the execution of the project, the report, the poster and the oral presentation.

    • The execution, oral presentation with demo video and poster in English count 40% and are assessed on the basis of the project’s degree of difficulty, the students’ planning and progress, initiative, assessment ability and independence, and the supervisor/client’s benefit from the project.
    • The report counts 60% and is assessed on the basis of the students’ understanding of the issue at hand, the thoroughness of the documentation, the discussion, critical assessment, clear presentation, systematic structure, literary references and degree of independence in the writing process.

    Only the grade given for the report can be appealed. The grade given for the execution and oral presentation cannot be appealed.

    All parts of the exam must be awarded grade E or better for the student to pass the course.

  • Teaching and learning methods

    Etter å ha gjennomført dette emnet har studenten følgende læringsutbytte, definert som kunnskap, ferdigheter og generell kompetanse:

    Kunnskap

    Studenten har kunnskap om:

    • metoder for modellering av enkle fysiske systemer
    • modellformer for dynamiske systemer ved hjelp av differensiallikninger, blokkdiagrammer, tilstandsrom og transferfunksjoner
    • karakteristiske responser for 1. og 2. ordens systemer i tids- og frekvensplan
    • metoder for stabilitetsanalyse av åpne og tilbakekoplete systemer
    • Laplacetransformasjon og invers Laplacetransformasjon
    • numerisk simulering av dynamiske systemer med bruk av MATLAB/Simuling eller lignende

    Ferdigheter

    Studenten kan:

    • sette opp matematiske modeller av enkle fysiske systemer
    • beskrive kontinuerlige, lineære dynamiske systemer av 1. og 2. orden ved hjelp av differensiallikninger, blokkdiagrammer, tilstandsrom og transferfunksjoner og konvertere mellom ulike modellformer
    • identifisere 1. og 2. ordens systemer ut i fra deres respons i tids- og frekvensplan
    • utføre stabilitetsanalyser av åpne og tilbakekoplete systemer
    • utføre Laplacetransformasjon og invers Laplacetransformasjon
    • anvende Laplacebaserte teknikker for frekvens- og transientanalyse av 1. og 2. ordens systemer

    Generell kompetanse

    Studenten kan:

    • analysere et modelleringsproblem og spesifisere en løsningsmetodikk
    • identifisere en eller flere matematiske modeller som kan brukes til å løse reguleringstekniske problemer
    • drøfte og begrunne egne valg og prioriteringer innen modellering av kontinuerlige dynamiske systemer
    • anvende kunnskapen innen automatisering og reguleringsteknikk.
  • Course requirements

    Two internal examiners. External examiners are used regularly.

  • Assessment

    Følgende arbeidskrav er obligatorisk og må være godkjent for å fremstille seg til eksamen:

    • 5 laboratorieoppgaver med protokoll
    • 4 (av 5) øvinger
  • Permitted exam materials and equipment

    The students shall acquire knowledge of thermodynamics and kinetics. In addition, the course shall provide students with basic knowledge of radioactivity and coordination chemistry.

  • Grading scale

    Passed laboratory course in KJPE1300 General Chemistry.

  • Examiners

    After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and general competence:

    Knowledge The student:

    • is capable of defining and carrying out calculations of energy, work and heat
    • is capable of explaining and carrying out calculations of enthalpy (H), entropy (S), and Gibbs free energy (G), for different processes
    • is capable of deriving and carrying out calculations of the connection between equilibrium constants, temperature and thermodynamic values
    • is capable of explaining and calculating phase equilibria/ phase diagrams
    • is capable of defining and carrying out calculations of colligative properties
    • is capable of deriving connections between electrochemistry and thermodynamic values
    • is capable of deciding a reaction order and performing kinetic calculations
    • has basic knowledge of energy and energy transfer in different systems, knowledge of colligative properties and phase equilibria
    • has basic knowledge of radioactivity
    • has basic knowledge of transition metal and coordination compounds

    Skills The student:

    • can collaborate in groups both with practical and written work
    • have insight into the proper handling of chemicals on the basis of safety data sheets and from laboratory experience

    General competence

    The student:

    • can perform thermodynamic measurements for different processes and phase transitions
    • can derive some equations in thermodynamics, chemical equilibrium and phase equilibrium, electrochemistry and reaction kinetics
    • can plot and outline phase diagrams
    • can use Nernst equation and emf measurements in calculations
    • can solve simple rate laws as differential equations and use the expressions further in calculations
  • Course contact person

    En intern sensor. Ekstern sensor brukes jevnlig.