Programplaner og emneplaner - Student
YFRMPRA3 Teaching Practice, 3rd period Course description
- Course name in Norwegian
- 3. praksisperiode
- Study programme
-
Bachelor’s Programme in Vocational Teacher Education
- Weight
- 0.0 ECTS
- Year of study
- 2023/2024
- Programme description
- Course history
-
Introduction
This course covers contemporary topics in smart energy systems such as smart power grid, smart buildings, vehicle-to-grid (V2G) and communication technologies for and network security in smart energy systems, including emerging approaches towards energy intelligence such as machine learning and blockchain.
The course will be offered once a year, provided 5 or more students sign up for the course. If less than 5 students sign up for a course, the course will be cancelled for that year
Required preliminary courses
None.
Learning outcomes
Knowledge
On successful completion of the course, the student:
- is at the forefront of knowledge about smart energy systems, both at the system level and at the specific component/application level.
- understands what different technologies can be used at what level in energy generation, transmission, distribution and consumption networks.
- knows about communication technologies and their performance limits for enabling energy intelligence in smart energy systems.
Skills
On successful completion of the course, the student can:
- solve resource optimisation problems for the energy information network.
- apply optimisation techniques and machine learning-based approaches for residential demand response management and vehicle-to-grid.
General competence
On successful completion of the course, the student can:
- communicate and collaborate with experts from other disciplines on larger interdisciplinary and multidisciplinary research projects.
- Recognise and assess a project's potential and value
- participate in debates and communicate results through recognised international channels, such as academic conferences.
- can construct and develop relevant models and discuss the model's validity.
- Disseminate knowledge to broader audiences
Content
The course is divided into three modules.
The first module covers lectures on economic interactions for the energy market, focusing mainly on applications such as demand response management (DRM), and vehicle-to-grid (V2G), etc.
The second module consists of lectures on current and emerging approaches such as machine learning and blockchain for energy intelligence and network security.
The third module will be a seminar which will include a hands-on session on tools such as optimisation and machine learning for solving specific problems in future energy information networks, and will conclude with a project assignment to be submitted by a given deadline.
Teaching and learning methods
None.
Course requirements
The results for the project assignment, process description, and the code will be assessed by the course leader. The exam can be appealed.
Assessment
Se omtale av praksis i programplanen
Permitted exam materials and equipment
Se omtale av praksis i programplanen
Grading scale
Pass or fail.
Examiners
Bachelor's or master's degree in engineering or science.