EPN-V2

PHVIT9560 Bioinformatics with emphasis on analysis of high throughput sequencing data Course description

Course name in Norwegian
Bioinformatikk med fordypning i analyse av data fra massiv parallell sekvensering
Study programme
Health Science Research Programme
PhD Programme in Health Sciences
Weight
5.0 ECTS
Year of study
2021/2022
Curriculum
FALL 2021
Schedule
Course history

Introduction

Det benyttes en intern og en ekstern sensor til sensurering av besvarelsene. Et uttrekk på minst 25 % av besvarelsene sensureres av to sensorer. Karakterene på de besvarelsene som er vurdert skal danne grunnlag for å fastsette nivå på resten av besvarelsene.

Required preliminary courses

Admission requirements

This course is primarily aimed at PhD candidates admitted to the PhD programme in Health Sciences and PhD students from Memorial University, Newfoundland. General terms for admission to the course is a completed master's degree in molecular biology or equivalent qualification (e.g. completed MABIO4400). Priority will be given to PhD candidates from OsloMet and Memorial University, Newfoundland.

Note that all students must have a laptop not more than 2 years old (windows 7 or more recent or mac with OS X). The laptop must be able to connect to wireless network.

Learning outcomes

On completion of the course, the PhD candidate has achieved the following learning outcomes, defined in terms of knowledge, skills, and general competence:

Knowledge

The PhD candidate

  • is able to conduct bioinformatics analysis projects in agreement with best practice (transparency and reproducibility) in the field of bioinformatic science's philosophy
  • is in the forefront of knowledge about the current high throughput sequencing (HTS) technologies and understands the differences, benefits and drawbacks of these HTS technologies
  • can evaluate and make sound decisions on which platform and bioinformatic approach to use for different HTS projects.
  • Can contribute to development of new knowledge and interpret results from various HTS applications

Skills

The PhD candidate can

  • Plan a HTS research project and choose optimal sequencing platform
  • Carry out the relevant bioinformatic analyses both on the command-line (unix) and R-studio, and utilize web-based resources like Galaxy server and Genbank E-utilities.
  • Interpret the results of bioinformatics analysis of HTS (e.g. reliability, sensitivity and specificity) and judge their value for answering biological questions
  • Disseminate the results of HTS based research

General competence

The PhD candidate can

  • argue in favour of particular HTS technologies or bioinformatic approaches on the basis of current knowledge
  • argue in favour of the kind of materials and the number of samples to select/include in different kinds of HTS projects
  • can participate in discussions on HTS methodology

Teaching and learning methods

The course consists of three weeks consecutive work that includes the following teaching methods: self-study including exercises/questionaries related to background theory (one week), lectures and seminars (one week), and practical exercises in the use of different software programmes for analysis of HTS data (one week). The outcomes of the practical exercises in last week are discussed in plenary sessions.

Course requirements

It is required that students complete all the obligatory practical exercises .

Assessment

All obligatory exercises must be completed to take the final exam. The final exam is a written examination with invigilation, 4 hours. One internal and one external examiner will assess the answer papers submitted by all candidates.

Grading scale

Bacheloroppgaven har et omfang på 20 ECTS. I dette inngår 5 poeng som omhandler strukturerte litteratursøk, metodespesialisering og avklaring av personsvernshensyn i datainnhenting.

I emnet skal studentene gjennomføre et individuelt eller parvis fordypningsarbeid med bibliotek- og informasjonsvitenskapelig relevans. Studentene får mulighet til å arbeide systematisk og metodisk ut fra teoretiske prinsipper og med relevant forskning. Studentene skal arbeide med å beskrive, belyse, analysere og drøfte faglige problemstillinger på en systematisk, reflektert og kritisk måte. Studenten kan velge mellom en:

  • Empirisk oppgave: Studenten samler inn data selv gjennom en egen undersøkelse. Undersøkelsen kan foretas gjennom enkle kvantitative tilnærminger (for eksempel spørreskjemaundersøkelser) eller ved en kvalitativ tilnærming (for eksempel intervjuer).
  • Litteraturoppgave: En problemstilling drøftes med bakgrunn i allerede foreliggende teoretiske og empiriske studier

Undervisningsspråk er norsk.

Examiners

Studenten må ha fullført og bestått 1. og 2. studieår av bachelorprogrammet i bibliotek- og informasjonsvitenskap før man kan starte opp med emnet.

Admission requirements

Bacheloroppgaven er et selvstendig arbeid. Mulige tema for bacheloroppgaven presenteres tidlig i høstsemesteret.

I tillegg vil det holdes metode- og søkeseminar, noe undervisning/ forelesning, samt individuell veiledning med tildelt veileder.