Programplaner og emneplaner - Student
DATS2300 Algorithms and Data Structures Course description
- Course name in Norwegian
- Algoritmer og datastrukturer
- Study programme
-
Bachelor in Applied Computer TechnologyBachelor's Degree Programme in Software EngineeringBachelor's Degree Programme in Mathematical Modelling and Data ScienceBachelor's Degree Programme in Information Technology
- Weight
- 10.0 ECTS
- Year of study
- 2019/2020
- Curriculum
-
FALL 2019
- Schedule
- Programme description
- Course history
-
Introduction
Emnet handler om analyse, design, implementasjon og anvendelse av de algoritmene og datastrukturene som brukes i vanlig og avansert databehandling.
Recommended preliminary courses
Emnet bygger på DAPE1300 Diskret matematikk, DAPE1400 Programmering og DATS1600/DATA1600 Programutvikling.
Required preliminary courses
Ingen ut over opptakskrav.
Learning outcomes
Etter å ha gjennomført dette emnet har studenten følgende læringsutbytte, definert i kunnskap, ferdigheter og generell kompetanse.
Kunnskap
Studenten kan:
- forklare oppbyggingen og hensikten med datastrukturer som tabeller, lister, stakker, køer av ulike typer, heaper, hashtabeller, trær av ulike typer, grafer og filer
- gjøre rede for virkemåten og effektiviteten til ulike varianter av algoritmer for opptelling, innlegging, søking, sletting, traversering, sortering, optimalisering og komprimering
Ferdigheter
Studenten kan:
- designe, implementere og anvende datastrukturer for ulike behov
- analysere, designe, implementere og anvende de algoritmene som trengs for å løse konkrete oppgaver
- bruke både egenutviklede og standardiserte algoritmer og datastrukturer til å løse sammensatte og kompliserte problemer
Generell kompetanse
Studenten kan:
- delta i diskusjoner og gi råd om hvilke datastrukturer og algoritmer det er mest hensiktsmessig å bruke i ulike situasjoner
- formidle viktigheten og nødvendigheten av å bruke gode strukturer og effektive algoritmer i programmeringsprosjekter
Teaching and learning methods
Forelesninger og individuelle øvinger. Øvingene er basert på eget arbeid med veiledning fra faglærer og/eller en studentassistent.
Course requirements
Følgende arbeidskrav er obligatorisk og må være godkjent for å fremstille seg til eksamen:
- 3 gruppearbeider (kode pluss dokumentasjon)
Assessment
Eksamensform: Individuell skriftlig eksamen på 3 timer.
Eksamensresultat kan påklages.
Permitted exam materials and equipment
Ingen.
Grading scale
Gradert skala A-F.
Examiners
En intern sensor. Ekstern sensor brukes jevnlig.
Overlapping courses
The student will carry out a project in the field of data protection and identity technology, preferably in collaboration with a relevant IT company, individually or in a group of up to five students. The aim is to provide the students with an introduction to data protection and identity technology, while they solve a commercial problem in the form of an extensive project assignment with a work load equivalent to 10 hours a week over a 12-week period. If the project is carried out during the summer, the work must correspond to four days a week over a six-week period.
The increasing use of digital media and internet to solve more and more of our tasks in both our private life and our work life (banking, shopping, health, education, exams, employment, news, tourism etc.), increases the chance of a data breach or misuse of personal information. In order to prevent this and ensure that trust in digital solutions is maintained, we need good data protection. By good data protection we mean that personal data must be treated carefully and used in such a way that it benefits users, customers and employees.
The aim of the new legislation GDPR (General Data Protection Regulation) is to focus on these issues and demand that all businesses that process personal data have a good data protection system in place, which among other things means that the registered person’s rights are maintained in a secure and reassuring way. These rights are about the right to access, deletion, portability, correction of wrong data and limits to processing. To comply with the strict demands for good personal data protection, it is necessary to have good technical support. This could be technology that supports the identification of persons, process automation, fraud prevention, handling the rights and consent of the data subjects, administration and quality assurance of data processor agreements, internal control support etc.
In addition to the projects on offer, students can find their own projects within a relevant company, public organization or nonprofit. In this case, it is the student's responsibility to find a supervisor for the project within the external organization. All student-initiated projects must be approved by a supervisor at OsloMet before the start of the project.
Completion of the course requires a placement in the relevant health care environment corresponding to two days a week over a 12-week period.If the project is carried out during the summer, the work must correspond to four days a week over a six-week period.
The elective course will only run if a sufficient number of students a registered.