EPN-V2

BYPE1600 Mechanics Course description

Course name in Norwegian
Mekanikk
Weight
5.0 ECTS
Year of study
2021/2022
Course history
Curriculum
FALL 2021
Schedule
  • Introduction

    Emnet gir en innføring i grunnleggende statikk og fasthetslære som er basis for alle konstruksjonsemnene i studiet. Emnet omhandler:

    • kraftvektorer og legemer i likevekt
    • moment-, skjærkraft- og normalkraftdiagrammer
    • bjelketeori
    • spenningsfordelinger
    • deformasjonsberegninger
  • Recommended preliminary courses

    After completing the course, the student is expected to have achieved the following learning outcomes defined in terms of knowledge, skills and general competence:

    Knowledge

    The student is capable of

    • determining exact values for the derivative and the anti-derivative using analytical methods
    • using the definitions to determine numerical values of derivatives and of definite integrals and assess the accuracy of these values
    • using the derivative and higher order derivatives to solve optimization problems, problems of related rates, and to calculate linear approximations and Taylor polynomials
    • explaining how definite integrals are used to calculate area, volume and arc length
    • solving separable and linear differential equations by means of anti-differentiation
    • explaining how direction fields of first order differential equations can be used to visualize the solutions to equations
    • finding numerical solutions of initial value problems using Euler's method
    • solving equations by the halving method and Newton's method
    • performing calculations using complex numbers

    Skills

    The student is capable of

    • using the derivative to model and analyze dynamic systems
    • setting up and calculating quantities which involve integrals
    • discussing the ideas underlying some analytical and numerical methods used to solve first-order differential equations
    • setting up and solving differential equations for practical problems
    • discussing numerical methods for solving equations
    • solving equations with complex coefficients and complex solutions

    General competence

    The student is capable of

    • transferring a practical problem into a mathematical formulation, so that it can be solved, either analytically or numerically.
    • writing precise explanations and motivations for using procedures, and demonstrating the correct use of mathematical notation.
    • using mathematical methods and tools relevant to their field of study
    • using mathematics to communicate and discuss engineering problems
    • evaluating results from numerical calculations and understanding basic numerical algorithms that use assignment, for-loops, if-tests, while-loops and the like, and explain key concepts such as iteration and convergence
    • explain that change and change per unit of time can be measured, calculated, summed and included in equations
  • Required preliminary courses

    Ingen utover opptakskrav.

  • Learning outcomes

    Etter å ha gjennomført dette emnet har studenten følgende læringsutbytte, definert som kunnskap, ferdigheter og generell kompetanse:

    Kunnskap

    Studenten:

    • har inngående forståelse av prinsippene i læren om krefter og likevekt
    • har inngående forståelse av fasthetslæren, herunder Hookes lov, bjelketeori, deformasjons- og spenningsberegninger
    • har inngående forståelse av virkemåten i de vanligste konstruksjonselementene, herunder bjelker, søyler og staver (fagverk)

    Ferdigheter

    Studenten:

    • kan beregne lagerreaksjoner i statisk bestemte konstruksjoner
    • kan beregne og tegne moment-, skjærkraft- og normalkraftdiagrammer for bjelker og staver
    • kan utføre spenning- og tøyningsberegninger for moment, skjærkraft og normalkraft
    • kan anvende bjelketeorien til å utføre deformasjonsberegninger på enkle statisk bestemte konstruksjoner

    Generell kompetanse

    Studenten:

    • har grunnleggende ferdigheter i laboratoriearbeid, rapportering og resultatpresentasjon
    • kan gjøre statiske beregninger som grunnlag for prosjektering av konstruksjonselementer
  • Teaching and learning methods

    Auditorieundervisning samt regneøvinger med veiledning i sal. Obligatorisk laboratorieøving.

  • Course requirements

    Følgende arbeidskrav er obligatorisk og må være godkjent for å fremstille seg til eksamen:

    • 6 av 10 individuelle regneøvinger
    • 1 gruppeoppgave (praktisk lab)
  • Assessment

    Individuell skriftlig eksamen under tilsyn på 3 timer.

    Eksamensresultat kan påklages.

    Ved eventuell ny og utsatt eksamen kan muntlig eksamensform bli benyttet. Ved eventuelt bruk av muntlig eksamen ved ny og utsatt eksamen, kan denne ikke påklages.

  • Permitted exam materials and equipment

    Håndholdt kalkulator som ikke kommuniserer tråløst. Dersom kalkulatoren har mulighet for lagring i internminnet skal minnet være slettet før eksamen. Stikkprøver kan foretas.

  • Grading scale

    Gradert skala A-F.

  • Examiners

    Through the work in this course, the students will gain insight into areas of mathematics that are important to the modelling of technical and natural science systems and processes. The topics covered are included in engineering programmes the world over. The topics are necessary in order to enable engineers to communicate professionally in an efficient and precise manner and to participate in professional discussions. Students will practise using mathematical software, which will enable them to perform calculations in a work situation.

  • Course contact person

    No requirements over and above the admission requirements.

  • Overlapping courses

    The teaching is organised as scheduled work sessions. During these sessions, the students practise using the subject matter that is presented. Some of the teaching will comprise problem-solving practice, using numerical software as a natural component. Exercises include discussion and cooperation, and individual practice on assignments. Between the scheduled work sessions, the students must work individually on solving problems and studying the syllabus.