Programplaner og emneplaner - Student
ACIT4630 Advanced Machine Learning and Deep Learning Course description
- Course name in Norwegian
- Advanced Machine Learning and Deep Learning
- Study programme
-
Master's Programme in Applied Computer and Information Technology
- Weight
- 10.0 ECTS
- Year of study
- 2022/2023
- Curriculum
-
SPRING 2023
- Schedule
- Programme description
- Course history
-
Introduction
The following coursework is compulsory and must be approved before the student can take the exam:
- 4-6 days laboratory course
- 2 obligatory classes (4 hours)
- peer-review assessment oral presentations (ethics assignment) (2-4 hours)
- 2 lab reports in groups of 2-4 students
Recommended preliminary courses
Kurset belyser empiriske og teoretiske problem i historiske så vel som samtidige sammenhenger mot det skandinaviske språkområdet og de nordiske litterære offentligheter og sub-offentligheter som horisont. Det er orientert mot hvordan humanistiske perspektiver kan løfte fram nye problemstillinger og bidra med andre innsikter til spørsmål om forholdene mellom litteratur, lesing og formidling på den ene siden, og demokrati, deltagelse og ytringskulturer på den andre.
Kurset undersøker litteraturens samfunnstilknytninger, hvilke funksjoner litteraturen har, hvordan den anvendes i ulike sosiale, politiske og kulturelle sammenhenger. Demokrati og medborgerskap, lesing og myndiggjøring, digitalisering og nye medier samt globalisering og materielle føringer er noen av de temaene som blir diskutert. Med øye for hvordan språklige, teknologiske og øvrige sosio-materielle forhold spiller inn i en globalisert virkelighet, er kurset særlig opptatt av hvordan humaniora bidrar.
Required preliminary courses
No formal requirements over and above the admission requirements.
Learning outcomes
On successful completion of the course, students should have the following learning outcomes defined in terms of knowledge, skills, and general competence.
;
Knowledge
The student:
- is knowledgeable about supervised, unsupervised, reinforcement learning
- has a good understanding of the principles of state-of-the-art deep neural networks such as CNN, RNN, Transformer, GAN, RL.
- has a good understanding of both theoretical and practical know-how required to use machine learning and deep learning methods effectively
;
Skills
The student:
- can build, train, test, and deploy;machine learning and deep learning models
- is able to analyze machine learning methods in regard to their performance and effectiveness
- is able to use existing deep learning networks, improve and/or customize them to apply to new problems
;
General competence
The student:
- has both theoretical and practical understanding of machine learning and deep learning methods
- can discuss relevance, strength, and limitations of machine learning and deep learning in solving real-world problems
- is able to work on relevant research projects
Content
Barnehagesektoren har i dag stort mangfold i eierskap, størrelse, organisering, personal- og barnegrupper. Dette mangfoldet stiller ulike krav til ledelsen i barnehagen. Kunnskapsområdet vektlegger den pedagogiske lederrollen og tar opp ledelse, samarbeid og utvikling. Ledelse inkluderer pedagogisk ledelse, personalledelse og ledelse av endrings- og utviklingsarbeid. Pedagogisk ledelse innbefatter lærings- og utviklingsprosesser i personalgruppen og i barnegruppen i samarbeid med personalet. Samarbeid omfatter også møter med foresatte og eksterne instanser.
Teaching and learning methods
The course consists of lectures,;assignments, group consultations, presentation seminars, and project work. In the seminars, students;will present and also actively participate in other presentations. This will facilitate research-oriented education in the field. Research projects will be aimed at cultivating the students towards good future researchers.
;
Practical training
None.
Course requirements
The following required coursework must be approved before the student can take the exam:
- Two oral presentations (one on a given topic, one on the topic of own choice)
- Participate as a prepared opponent/discussant in two;presenations from other students
Assessment
Exam in two parts:
- A group project: implementation and report (about 7000 words). A group of 2-3 students will be formed during the course.;
- Individual oral exam (about 30 minutes).
Each of them carries;50% weight;in the final grade. The oral examination cannot be appealed.
Both exams must be passed in order to pass the course.
;
New/postponed exam
In case of failed exam or legal absence, the student may apply for a new or postponed exam. New or postponed exams are offered within a reasonable time span following the regular exam. The student is responsible for applying for a new/postponed exam within the time limits set by OsloMet. The Regulations for new or postponed examinations are available in Regulations relating to studies and examinations at OsloMet.
Permitted exam materials and equipment
All aids are permitted for the project report.
No aids are permitted for the oral exam.
Grading scale
Grade scale A-F.
Examiners
Two internal examiners. External examiner is used periodically.
Course contact person
Associate Professor Raju Shrestha