EPN-V2

ACIT4610 Evolutionary artificial intelligence and robotics Course description

Course name in Norwegian
Evolutionary artificial intelligence and robotics
Study programme
Master's Programme in Applied Computer and Information Technology
Weight
10.0 ECTS
Year of study
2025/2026
Curriculum
FALL 2025
Schedule
Course history

Introduction

This course will present complex systems (cellular automata, networks, and agent-based) modelling and programming through state-of-the-art artificial intelligence methods that take inspiration from biology (sub-symbolic and bio-inspired AI methods), such as evolutionary algorithms, neuro-evolution, artificial development, swarm intelligence, evolutionary and swarm robotics.

During this course, students will get both theoretical and practical experience within complex systems and bio-inspired/sub-symbolic AI methods.

Required preliminary courses

No formal requirements over and above the admission requirements.

Learning outcomes

On successful completion of the course, students should have the following learning outcomes defined in terms of knowledge, skills, and general competence.

Knowledge

The student:

  • has advanced knowledge in sub-symbolic and bio-inspired AI methods.
  • has a clear understanding of key concepts in AI such as emergence, adaptation, evolution.
  • has a clear understanding of complex systems modelling and analysis.

Skills

The student:

  • can program complex systems using bio-inspired AI methods.
  • can design and implement evolutionary and swarm robotic systems.
  • can model complex systems using evolutionary AI models.

General Competence

The student:

  • has theoretical and practical understanding of biologically-inspired AI methods, evolutionary robotics, complex systems methods.
  • can understand and discuss relevance, strength and limitations of biologically inspired and complex systems.
  • is able to work in relevant research projects.

Teaching and learning methods

The course consists of lectures and seminars on techniques and methods, as well as working on a project that will be chosen from a portfolio of available problems. The students will work individually or in groups (2-3 students) and will submit the code and a project report.

Practical training

Lab sessions.

Course requirements

The following required coursework must be approved before the student can take the exam:

  • Two mandatory mid-term group reports on the given portfolio/project (1000-1500 words)
  • One mandatory mid-term group oral presentation on the given portfolio/projects (20 minutes; 15 minutes of presentation and 5 minutes of questions and answers. All group members must be present at the group presentation and participate in questions and answers.)

Assessment

The assessment will be based on the following:

  • A group project delivery (2-4 students), consisting of a report (7500-3000 words) and code
  • An individual oral examination (20 minutes)

The weight of the two parts is 50% each. The oral exam (individual) cannot be appealed.

Both parts must be separately passed in order to pass the course.

The project report should be between 7500-3000 words. Both the code/program and the report will be evaluated. The comprehensiveness of the code/program is evaluated with the assumption that each student in the group has committed about 60 hours towards developing the solution. As a general guideline, the code/program carries a stronger weight than the report.

New/postponed exam

In case of failed exam or legal absence, the student may apply for a new or postponed exam. New or postponed exams are offered within a reasonable time span following the regular exam. The student is responsible for registering for a new/postponed exam within the time limits set by OsloMet. The Regulations for new or postponed examinations are available in Regulations relating to studies and examinations at OsloMet.

Permitted exam materials and equipment

All aids are permitted, provided the rules for plagiarism and source referencing are complied with.

For the oral exam, students will not have access to computers or other aids.

Grading scale

Grade scale A-F.

Examiners

Two internal examiners. External examiner is used periodically.

Course contact person

Associate Professor Kazi Shah Nawaz Ripon