Programplaner og emneplaner - Student
ACIT4030 Machine Learning for 3D Computer Vision Course description
- Course name in Norwegian
- Machine Learning for 3D Computer Vision
- Study programme
-
Master's Programme in Applied Computer and Information Technology
- Weight
- 10.0 ECTS
- Year of study
- 2025/2026
- Curriculum
-
FALL 2025
- Schedule
- Programme description
- Course history
-
Introduction
This course will present the state of the art in algorithms for machine learning for the 3D environment. We will cover topics related to deep learning for 3D data such as point clouds, multi-view images, and shape graphs. The course covers applications like classification, segmentation, shape retrieval and scene representation.
Recommended preliminary courses
Etter å ha gjennomført dette emnet, har studenten følgende læringsutbytte definert i form av kunnskap, ferdigheter og generell kompetanse:
Kunnskap
Studenten
- skal kunne reflektere over egen ambisjon og faglig spesialisering innen motefeltet
- skal kunne identifisere og anvende relevante teorier tilknyttet eget prosjekt
Ferdigheter
Studenten
- kan identifisere og utvikle relevante utforskningsområder i et lokalt og globalt perspektiv
- kan identifisere og anvende relevante metoder for gjennomføring av prosjekter
- kan identifisere, planlegge og gjennomføre et selvformulert prosjekt med hensikt i å tydeliggjøre et faglig ståsted
Generell kompetanse
Studenten
- kan kontekstualisere eget prosjekt i en nasjonal og global diskusjon
- kan reflektere over hvordan prosjektet kan bidra til faglig spesialisering, og hvordan kunnskapen kan anvendes i videre arbeid
- kan videreutvikle og utdype sin egen profesjonelle praksis gjennom en praktisk og teoretisk tilnærming.
Required preliminary courses
No formal requirements over and above the admission requirements.
Learning outcomes
Upon successful completion of the course, the candidate:
Knowledge
- has knowledge of problems within graphics and imaging that are applicable to machine learning, such as classification, segmentation, correspondence detection, and shape retrieval.
- has a good understanding of problems related to 3D shape and image synthesis.
Skills
- is able to apply state-of-the art machine learning algorithms to real-world problems related to imaging and 3D graphics.
Competence
- is aware of the state of the art in algorithms for machine learning on 3D data.
- has experience with real world problems within the course domain, with a focus on solutions using deep neural architectures.
Content
Emnet forutsetter tilstedeværelse i verksteder og aktiv deltakelse i undervisningen. I studiet brukes det arbeidsformer som forelesninger, workshop, veiledning og faglige debatter. Dette har til hensikt å utvikle studentens kunnskaper, idéer, praktiske ferdigheter, faglige forståelse og uttrykksevne sett i et bærekraftig perspektiv. Det forventes at studenten selv innhenter relevant fagstoff utover pensum i emnet og det oppfordres til å bruke læringssentrene og de ressursene som tilbys der. Felles presentasjoner og utstillinger vil danne grunnlag for drøfting og vurdering av studentarbeid.
Teaching and learning methods
Teaching approach is a combination of traditional weekly lectures and practical work on a semester group project. Lectures will present influential research for relevant topics. The semester group project exposes the student to a chosen real-world problem relevant to the course topic.
Practical training
The student will be exposed to programming with repositories such as ShapeNet and will have created solutions for real-world problems related to deep learning for 3D data.
Course requirements
The following required coursework must be approved before the student can take the exam:
Two mandatory group assignments consisting of technical tasks, summarized in reports (about 10 pages each).
Assessment
The exam consists of three parts:
- Oral presentation of 15 minutes (20% of the final grade), individual or in a group of two
- Written evaluation of another student presentation, 500-1000 words (10% of the final grade), individual or in a group of two
- Final project report between 6000 and 11,000 words (70% of the final grade), individual or in a group of two.
All three parts of the exam must be passed in order to pass the course.
The oral examination cannot be appealed.
New/postponed exam
In case of failed exam or legal absence, the student may apply for a new or postponed exam. New or postponed exams are offered within a reasonable time span following the regular exam. The student is responsible for registering for a new/postponed exam within the time limits set by OsloMet. The Regulations for new or postponed examinations are available in Regulations relating to studies and examinations at OsloMet.
Permitted exam materials and equipment
All aids are permitted, provided the rules for plagiarism and source referencing are complied with.
Grading scale
Grade scale A-F.
Examiners
Two internal examiners. External examiner is used periodically.
Course contact person
Emnet er en forberedende periode for bachelorprosjektet. I denne perioden skal studenten tydeliggjøre et utforskningsområde basert på innsikt om sitt faglige ståsted og de kompetanseområdene de ønsker å spesialisere seg i. Målet med perioden er at studenten skal posisjonere egen praksis i et nasjonalt og/eller globalt motefaglig perspektiv.
Emnet inneholder både en teoretisk og praktiske komponent. Den skriftlige delen består av å utvikle et prosjektdesign som danner grunnlaget for gjennomføringen av bachelorprosjektet. Den praktiske delen skal visuelt beskrive gjennomføringen av design- og produksjonsprosesser.