EPN-V2

KFKMU26100 Emne 1: Tall, algebra og funksjoner Emneplan

Engelsk emnenavn
Subject 1: Mathematics 2U
Studieprogram
Matematikk 2MU, trinn 5-10
Omfang
15.0 stp.
Studieår
2025/2026
Timeplan
Emnehistorikk

Innledning

The following coursework requirements must have been approved for the student to take the exam:

  • Peer review: Provide written feedback on another student’s written individual project (1-2 pages). The aim of this coursework requirement is to ensure that the student reflects on the central learning outcomes in the course when working with the individual project, and to make sure each student group has satisfactory progress in their individual project

All required coursework must be completed and approved by the given deadline for the student to take the exam. If the coursework requirements have not been approved, the student will be given one opportunity to submit an improved version by a given deadline.

Anbefalte forkunnskaper

x

Forkunnskapskrav

The exam in the course consists of two parts:

1. Written group project - counts 40% of the final grade

In the group project you will assess the sustainability performance of a business and make suggestions for improvements, based on frameworks and theories from the course.

The group project will be carried out in groups of 2-5 students. The group members will be randomly selected.

The group project should have a scope of 8-10 pages, excluding front page, table of contents, appendices. Font and font size: Arial / Calibri / Verdana 12 points. Line spacing: 1,5

2. Written individual project - counts 60% of the final grade

In the individual project you will research and write a report about one or more of the topics covered in the course.

The individual project should have a scope of 8-10 pages, excluding front page, table of contents, appendices. Font and font size: Arial / Calibri / Verdana 12 points. Line spacing: 1,5

The students can write their exams in Norwegian or in English.

The student receives two separate grades, one for the group project and one for the individual project.

Both parts of the exam must be passed in order to pass the course. Each exam component may be retaken separately.

Læringsutbytte

Etter fullført emne har studenten følgende læringsutbytte definert som kunnskap, ferdigheter og generell kompetanse:

Kunnskap

Studenten

  • har inngående undervisningskunnskap i matematikken elevene arbeider med på trinn 5-10, særlig tallforståelse og regning, overgangen fra aritmetikk til algebra, algebra og funksjoner
  • har undervisningskunnskap knyttet til ulike matematiske bevis- og argumentasjonsformer, og erfaring med matematiske teoribygninger innen for eksempel geometri, trigonometri, algebra, kombinatorikk og sannsynlighetsteori
  • har god kunnskap i matematisk analyse, inkludert derivasjon, integrasjon og enkle matematiske modeller, og kan relatere disse begrepene til det matematikkfaglige innholdet i trinn 5-10
  • har kunnskap om språkets rolle for læring av matematikk
  • har kunnskap om vanlige interaksjonsmønster og kommunikasjon knyttet til matematikkundervisning
  • har kunnskap om den betydningen representasjonsformer har i matematikk, og hvilke utfordringer som er knyttet til overganger mellom representasjonsformer
  • har undervisningskunnskap om betydningen av regning som grunnleggende ferdighet i alle skolefag
  • har kunnskap om å uttrykke seg muntlig, lese, uttrykke seg skriftlig og kunne bruke digitale verktøy i matematikkfaget
  • har kunnskap om matematikkfagets innhold på de ulike trinnene i grunnskolen og i videregående skole, og om overgangene mellom trinnene i grunnskolen og ungdomstrinn/videregående skole
  • har kunnskap om ulike teorier for læring, og om sammenheng mellom læringssyn og fag- og kunnskapssyn
  • har kunnskap om et bredt metoderepertoar for undervisning i matematikk
  • har innsikt i og erfaring med bruk av ulike læremidler, både digitale og andre, og muligheter og begrensninger ved slike læremidler
  • har kunnskap om matematikkens historiske utvikling

Ferdigheter

Studenten

  • kan planlegge, gjennomføre og vurdere matematikkundervisning for alle elever på trinn 5-10, med fokus på variasjon og elevaktivitet, forankret i forskning, teori og praksis
  • har gode praktiske ferdigheter i muntlig og skriftlig kommunikasjon i matematikkfaget, og kompetanse til å fremme slike ferdigheter hos elevene
  • kan bruke arbeidsmåter som fremmer elevenes undring, kreativitet og evne til å arbeide systematisk med utforskende aktiviteter, begrunnelser, argumenter og bevis
  • kan bruke og vurdere kartleggingsprøver og ulike observasjons- og vurderingsmåter, for å tilpasse opplæringen til elevenes ulike behov
  • kan tilpasse opplæring både for lavt- og høytpresterende elever
  • kan vurdere elevenes måloppnåelse med og uten karakterer, og begrunne vurderingene
  • kan kommunisere med elever, enkeltvis og i ulike gruppesammensetninger, lytte til, vurdere og gjøre bruk av elevers innspill, og institusjonalisere kunnskap
  • kan analysere og vurdere elevers tenkemåter, argumentasjon og løsningsmetoder fra ulike perspektiver på kunnskap og læring
  • kan forebygge og oppdage matematikkvansker og tilrettelegge for mestring hos elever med ulike typer matematikkvansker
  • kan bruke digitale verktøy og digitale læringsressurser i planlegging, gjennomføring og vurdering av undervisning

Generell kompetanse

Studenten

  • har forståelse for matematikkfagets betydning som allmenndannende fag og dets samspill med kultur, filosofi og samfunnsutvikling
  • har innsikt i matematikkfagets rolle innenfor andre fag og i samfunnet for øvrig
  • har innsikt i matematikkfagets betydning for deltakelse i et demokratisk samfunn

Innhold

Tall, algebra og funksjoner

  • Arbeide med tall og tallregning i skolen med spesielt fokus på brøk, potenser og røtter.
  • Utvikle god kunnskap om ulike tilnærminger til algebra som generalisert aritmetikk, funksjoner, modellering og problemløsning.
    • Tidlig algebra, arbeid med utvikling av algebraisk tenkning hos elever på mellom og ungdomstrinn
    • Arbeid med likninger, herunder annengradsligninger og ligningssett,
    • Kunne og forstå ulike representasjoner av funksjoner og variabelbegrepet
    • Kunne grunnleggende egenskaper ved sentrale funksjoner
    • Arbeid med modellering av virkeligheten ved hjelp av sentrale funksjonstyper
  • Kjenne betydningen av en kovariant tilnærming til funksjoner for å studere og modellere endring og utvikling.
  • Arbeid med derivasjon av enkle polynomfunksjoner, og knytte dette til målene om endring og utvikling i grunnskolen.
  • Arbeid med integrasjon av enkle polynomfunksjoner.
  • Bruk av Dynamiske læringssystemer (DLS) som GeoGebra for utforskning av matematiske begreper og sammenhenger.
  • Gode kunnskaper om ulike matematikkdidaktiske teorier og rammeverk som bidrar til innsikt om undervisningskunnskap i matematikk knyttet til
    • Planlegging, gjennomføring og evaluering av undervisning
    • Design og valg av gode oppgaver og aktiviteter,
    • Kommunikasjon i matematikk
    • Vurdering i matematikk

Kjerneelementer

Fagets seks kjerneelementer blir ivaretatt ved at de danner grunnlaget for oppgaver og aktiviteter på samlingene. Det vil være fokus på rike oppgaver som inviterer til utforsking og problemløsning og som innebærer ulike varianter av de andre kjerneelementene.

Kjerneelementene i matematikk er:

  • Utforskning og problemløsning
  • Modellering og anvendelser
  • Resonnering og argumentasjon
  • Representasjon og kommunikasjon
  • Abstraksjon og generalisering
  • Matematiske kunnskapsområder

Grunnleggende ferdigheter

Kurset skal gjøre studentene fortrolige med de grunnleggende ferdighetene å kunne uttrykke seg skriftlig og muntlig, å kunne lese og regne og å kunne bruke digitale verktøy i faget matematikk, slik disse er utformet i gjeldende plan for matematikk i grunnskolen.

Arbeids- og undervisningsformer

Arbeidet i kurset vil i hovedsak integrere både faglige og didaktiske aspekter. Kurset er organisert i tre samlinger i høstsemesteret. Samlingene går over to hele dager. Samlingene vil bli brukt til aktiviteter som krever samhandling. Mellom samlingene forventes det at studentene jobber med oppgaver. To av oppgavene vil være arbeidskrav i kurset (se avsnittet «Arbeidskrav»).

Arbeidskrav og obligatoriske aktiviteter

Grade scale A - F

Vurdering og eksamen

Avsluttende vurdering er en individuell, skriftlig eksamen under tilsyn (seks timer). Eksamen tilsvarer 15 studiepoeng.

Ny/utsatt eksamen

Ny og utsatt eksamen gjennomføres som ved ordinær eksamen.

Hjelpemidler ved eksamen

x

Vurderingsuttrykk

Jakob Utgård

Sensorordning

Eksamen vurderes av to interne sensorer.

Opptakskrav

Se programplanen.