Programplaner og emneplaner - Student
ACIT4321 Quantum Information Technology Emneplan
- Engelsk emnenavn
- Quantum Information Technology
- Studieprogram
-
Master's Programme in Applied Computer and Information Technology
- Omfang
- 10.0 stp.
- Studieår
- 2024/2025
- Pensum
-
HØST 2024
- Timeplan
- Emnehistorikk
-
Innledning
Quantum information technology implements quantum phenomena to process information and communicate it beyond the limits of the classical world. According to the EU Quantum Technologies Flagship report, such technology is based on the following pillars:
- Quantum computation
- Quantum communication
- Quantum simulation
- Quantum metrology and sensing
This course will introduce students to the first three of these fields, by equipping them with knowledge of principles, ideas, and methods. Many of these methods are also applicable within several other fields.
Prior knowledge in quantum physics is not required. The first few weeks of the course is dedicated to an introduction to key concepts in quantum physics. These concepts are introduced in a practical manner - with emphasis on simulation and phenomenology rather than theory.
The students will be trained to create their own quantum algorithms, simulate quantum systems, and implement the corresponding programs on classical and quantum computers. By implementing calculations and simulations of quantum systems, the students will learn about the fundamental quantum phenomena and key concepts. Moreover, in order to lay the proper foundation, the fundamental concepts of classical information theory is introduced.
A selection of recently published quantum algorithms and methods, including communication protocols, computational methods of modern quantum physics, and optimization algorithms, will be presented and analysed. Particular focus will be given to applications in data science in order to address research challenges in sustainable systems. Finally, the most recent challenges and particular proof of concept problems, including so-called quantum supremacy, will be addressed.
Anbefalte forkunnskaper
Arbeidsmåtene i studiet bygger på studentenes erfaringsbaserte og praksisnære kunnskap og skal bidra til å åpne for refleksjon og læreprosesser. Studiet inneholder en stor grad av selvstudier og det forutsettes at studenten møter forberedt til alle samlinger. Studenten veksler mellom ulike læringsarenaer, og studentaktiviteter foregår både på universitetet, på arbeidsplassen og ved bruk av digitale læringsplattformer (LMS).
Det legges opp til varierte undervisnings- og arbeidsformer i forpliktende samarbeid med arbeidsplassen, eksempelvis individuelt arbeid, gruppearbeid, seminar, praktiske øvelser, workshop, forelesninger og veiledning.
Praksis
Praksisstudiet fordrer at studentene benytter arbeidsformer som understøtter læringsutbyttebeskrivelsene i og på tvers av kunnskapsområder. Praksisstudiet skal bidra til selvstendighet, trygghet og til å kunne ta ansvar i utøvelse av pedagogisk ledelse og faglig arbeid i barnehagen med en særlig vektlegging av profesjonsetiske problemstillinger.
Fordeling av praksisperiodene: 1 semester: 15 dager på eget arbeidssted - veiledet og vurdert av faglærer i samarbeid med dialogpartner (samtalepartner i barnehagen). Dagene fordeles i utgangspunktet med 3 dager i fem uker og kombineres med ordinære samlinger og knyttes opp mot arbeidskravet.
Forkunnskapskrav
Students taking the course should be familiar with elementary calculus, including the concepts of complex numbers and numerical methods, and with basic linear algebra. Moreover, the students should be in command of a programming language/computing environment such as, e.g., Python, MATLAB or C(++).
In this regard, it is worth mentioning that some relevant mathematical and numerical concepts will be revised during the the first lectures.
Læringsutbytte
A student who has completed this course should have the following learning outcomes defined in terms of knowledge, skills and general competence:
Knowledge
On successful completion of the course the student
- is familiar with fundamental key concepts within information theory such as Shannon Entropy, noiseless and noisy-channel coding theorems, and optimal coding algorithms.
- knows what a qubit is and how the information content grows when qubits are connected.
- is familiar with the elementary operations, or gates, of quantum computing - including gates such as the Hadamard gate and CNOT.
- knows the present state of the art when it comes to existing quantum computers.
- can implement simple quantum algorithms and run them on actual quantum computers.
- knows basic quantum communication protocols such as key distributions and secret sharing and understands the ideas behind them
- is familiar with several methods, such as Shor’s algorithm and quantum annealing, which enables quantum computers to solve problems considerably faster than classical computers.
- is familiar with how quantum technology affects traditional encryption schemes, and provides novel ones.
Skills
On successful completion of the course the student
- is able to model and simulate numerically simple quantum systems and processes - both on classical and quantum computers.can independently devise, implement and run calculations and simulations of simple quantum systems.
- can design her/his own quantum algorithms.
General competence
On successful completion of the course the student
- is familiar with several phenomena specific to quantum physics - such as quantization, particle interference, collapse of the wave function, particle spin, entanglement and decoherence - and how they may manifest themselves within quantum computing.
- is familiar with how information may be described by quantitative means - both within a classical and a quantum context.
- knows how to revise and improve on implementations of quantum programs.
- can address some of the practical challenges related to building quantum computers.
- knows the importance of quantum computing within information technology and the open challenges yet to be solved in this scope.
Innhold
- A brief re-acquaintance with vectors, matrices and complex numbers
- Computational methods of quantum physics
- Introduction to quantum phenomena
- Introduction to classical information theory
- Qubits and quantum gates
- Entanglement and interference as key components of quantum computing
- Fundamental quantum algorithms
- Quantum annealing as a way of addressing optimization problems
- Quantum cryptography
- The challenge of de-coherence and openness in quantum systems
Arbeids- og undervisningsformer
The teaching is organized in sessions where the subject material is presented, and in sessions where the students solve problems on their laptops and prototype quantum computers. The latter is done using online cloud platforms currently provided by enterprises such as, e.g., IBM and D-Wave. Between these sessions, the students are expected to work independently, using their computers, access to quantum computers, and course notes.
In the last stage of the cource, the students are required to complete and present an individual project that involves (i) simulation of a quantum system/process, (ii) simulation of a quantum communications protocol, or (iii) creation of a quantum code and its implementation on a quantum processor using an online cloud platform. The project should be concluded by submitting a report which provides a description of the project, its motivation and implementation, and an analysis the obtained results.
Arbeidskrav og obligatoriske aktiviteter
None
Vurdering og eksamen
The assessment will be based on a portfolio of the following:
- One individual project delivery consisting of a report (2000 - 4000 words)
- An individual oral examination (30 minutes)
The portfolio will be assessed as a whole and cannot be appealed.
New/postponed exam
In case of failed exam or legal absence, the student may apply for a new or postponed exam. New or postponed exams are offered within a reasonable time span following the regular exam. The student is responsible for registering for a new/postponed exam within the time limits set by OsloMet. The Regulations for new or postponed examinations are available in Regulations relating to studies and examinations at OsloMet.
In the event of a postponed examination in this course the exam may be held as an oral exam. Oral exams cannot be appealed.
Hjelpemidler ved eksamen
All aids are permitted, provided the rules for plagiarism and source referencing are complied with.
For the oral exam, students will only have access to the project report.
Vurderingsuttrykk
Grade scale A-F.
Sensorordning
Two internal examiners. External examiner is used periodically.
Emneansvarlig
Etter fullført emne har studenten følgende læringsutbytte definert som kunnskap, ferdigheter og generell kompetanse:
Kunnskap
Studenten har kunnskap om
- aktuelle teorier og forskning om barns utvikling, lek, læring, omsorg og danning, og om sammenhenger mellom disse
- lek som fenomen og som en arena for utforsking, vennskap og kontakt mellom barn og mellom barn og voksne
- observasjon og pedagogisk dokumentasjon i barnehagepedagogisk arbeid
- barns væremåter og om hvordan dette har sammenheng med deres erfaringer, interesser og rett til medvirkning
- samiske perspektiver på barndom
- offentlige dokumenter som berører barnehagen
Ferdigheter
Studenten kan
- skape, lede og evaluere pedagogiske prosesser og delta i lek og læring gjennom omsorgsfulle relasjoner ved å inkludere barns erfaringer, interesser og rett til medvirkning i dette arbeidet
- planlegge, grunngi, samarbeide om og reflektere over pedagogisk arbeid i lys av praksiserfaringer og teori
- analysere og reflektere over barnehagens verdigrunnlag, profesjonsetiske utfordringer og barnehagepolitiske dilemmaer
Generell kompetanse
Studenten kan
- utøve pedagogisk kunnskap, kritisk tenkning og begynnende profesjonell dømmekraft og faglig skjønn ved å formulere og formidle dette muntlig og skriftlig
- analysere og reflektere kritisk over egen profesjonsutøvelse i samspill med barn, personale og foresatte
- utøve forståelse i profesjonsetiske dilemmaer og utfordringer i en kompleks barnehagehverdag
- evaluere det pedagogiske miljøet og fysiske rammers betydning for barns muligheter for trivsel, lek og læring
Emneoverlapp
Individuell skriftlig eksamen under tilsyn, varighet fem timer.
Ny og utsatt eksamen gjennomføres på samme måte som ved ordinær eksamen. Studentens rettigheter og plikter ved ny/utsatt eksamen framgår av forskrift om studier og eksamen ved OsloMet. Studenter er selv ansvarlige for å melde seg opp.